CR
Consulling ¢ Analytics Club
N7 Guwahali

Gradient Ascent

2024-25

Question Bank

This guide covers questions and answers commonly asked in Data science and
Machine learning interviews

Index

BasSiC PYThON....coii e 3
Python Libraries.. ...ttt eeeeree e 8
LiN@ar REEIESSION....uiiiiiiiiiiccciiiireeeeee e e e ee e cirrrreeeee e e e e e e enaes 17
LOZISTIC REZIESSION.cciieiiiirieeeeeirteeeeeeeirreee e e serree e e e s 33
BiaS VarianCeu...uuuuiiiieeiiiiieccccttteeeee e e e e 44
ClUSEEIING ettt s erae e e s ee e e e ea 50
AUC - ROC....eiiiiiiieireeeeeirteeesieeesssireeesssnreeesssasaeessssnaeesnas 55
P A ettt et e e s e e e s s rr e e e s s aaae e e s nns 59
Errors and Cross-Validation........ccceeeevivieiiiiccciiieeeececneen, 61
Decision Trees, KNN, SVM, Random Forest..........ccceeeeeunnn.. 63
Basic Deep LearNiNg.....cccccuvieeeeeeeiiiinreiiiiirieeeeeeeesessesnnnns 72
Regularisation and Normalisation.........ccccevveeveviierncneenne. 84
(O] o110 21721 (o] o S o1
Hyperparameter & TUNING.....ccccvvieeiiieiiiiieeeicerreeeee e 96
(000 1 01 010N (=T gV 1] [0 o 99
NP ettt ettt e e erre e e e sare e s s srra e e e ssbaa e e s snaaaeees 125
FINe TUNING, GAN...coiiiiiiieiiecreee e e e s 145

Basic Python

Q1. In Python, what is Polymorphism?

Answer: In Python, Polymorphism makes us understand how to perform a task in different ways in
Python. It is useful in providing flexibility in task processes. Through polymorphism, a class's
objects can invoke another class's methods, allowing for code reuse. Polymorphism also allows
subclasses to override the methods of a superclass, allowing for further code reuse. This is
especially useful in object-oriented programming, as it allows for inheritance that allows code to be
written once and reused multiple times.

Q2. if Python is object-oriented or functional programming?

Answer: Python is considered to be a multi-paradigm language, which means it supports multiple
programming techniques including object-oriented and functional programming. Since most
Python tools have bundled up data and functions, it is considered to be object-oriented. The
functions of Python are important for data scientists and programmers alike because Python
supports both object-oriented and functional programming.

Q3. Python offers a powerful mechanism to extract specific parts of
sequences like strings, lists, and tuples. This mechanism allows the
programmer to specify a start, stop, and step to define the subsequence,
without altering the original. While this technique works across various
sequence types, its flexibility lies in its ability to handle both mutable and
immutable sequences differently. What is this method called, and how can
you use it to modify a sequence like a list?

Answer: This powerful mechanism in Python is known as slicing. It allows you to extract specific
parts of sequences such as strings, lists, and tuples by specifying a start, stop, and step. It works
well with all the sequence types and lets you manipulate your data cleanly and precisely without

changing the original sequence. Again, slicing can be applied to mutable sequences like lists. To
change a section of a list, you can just assign new values to a slice:

my_list=1[1, 2, 3, 4, 5]

my_list[1:3] = [7, 8] # Change elements starting from index 1 to index 2

print(my_list) # Output: [1, 7, 8, 4, 5]

So, slicing is pretty flexible to extract and alter data.

Q4. How does Python ensure that objects with the same name in different
scopes don’t conflict, and what structure does it use to maintain this
system?

Answer: Python uses a system called namespace to provide unique identification for objects like
variables and functions, ensuring no conflicts between names in different scopes. Namespaces are

structured like dictionaries, where names are keys and objects are values. This system is
maintained across local, global, and built-in scopes.

Q5. Which Python keyword allows you to leave code blocks such as loops
or functions empty without causing a syntax error, and how does it differ

from a comment?

Answer: The keyword pass allows you to leave some code blocks empty where code is syntactically
required, such as in loops, conditionals, or even function definitions. Similar to comments, pass is
recognized by the interpreter but it does nothing at runtime. This way, no syntax error of missing
code statements will occur in your program.

Q6. What are ODBC modules in Python?

Answer: The Microsoft Open Database Connectivity is an interface for the C programming language.
It is the standard for all APIs using database C. If you use a Python ODBC interface with the standard
ODBC drivers that ship with most databases, you can likely connect your Python application with
most databases in the market. The different Python ODBC modules are pyodbc, PythonWin ODBC,
and MxODBC.

Q7.How will you send an email from a Python Script?
Answer: You can use a secure connection with the extensions SMTP_SSL() and .starttls(). Following
this step, use the built-in smtplib library module to define the SMTP client session object. This

object can then be used to send the email message using Python Script. To send the emails you can
use HTML content, as well as, the attachments with the email package. If you use a CSV file that
contains contact data, you can even send a number of personalized emails. If you add a few lines of
code to your Gmail account, you can configure the Yagmail package to send emails.

Q8. What is Self-used for in Python?

Answer: It is used to represent the instance of the class and allows you to access its attributes and
methods. This is because in Python, the ‘@’ syntax is not used to refer to the instance attributes.

Q9. What are generators in Python?

Answer: Generators are ways of implementing an effective representation of iterators and it is the
only normal function that provides expression in the function. Thus, this enables Python
developers to create iterators in a quick and clean way.

Q10. Differentiate between override and new modifiers.

Answer: The override modifier is used for overriding a base class function within the child class
while the new modifier is used to inform the compiler to use the new implementation and not the
base class function.

Q11. Why is NumPy preferred over Python lists?

Answer: The reason why NumPy is often chosen over Python lists is that Python lists are flexible,
accept different data types, and therefore incur slow overhead, especially in massive-scale
numerical operations. NumPy arrays, or ndarrays, are constructed on top of C arrays, statically
typed, and homogeneous, which makes operations faster and uses memory efficiently.

One of the major advantages is the ability to perform vectorized operations. In other words, instead
of using explicit loops as is common with the usage of Python lists, element-wise operations can be
executed over whole arrays in one command. This is especially useful in the kind of tasks that you
usually find in data science, like matrix operations in machine learning and statistical models.
Unlike Python lists, which are arrays of pointers, NumPy arrays are stored as blocks of contiguous
memory. This has significantly reduced their memory usage and access time. Because of their
homogeneous nature, compared to Python lists, NumPy arrays have lesser memory overhead since
they store variable-sized and variable-typed elements.

In short, NumPy is a must-have due to its optimized storage, speed, and vectorized operations for
efficient numerical computation in data science.

Q12. Python offers a way to transform objects into byte streams and later
reconstruct them back into their original form. What are these two

opposing processes called, and which functions handle them?

Answer: In Python, Pickling is the process of converting a Python object into a byte stream, which
allows it to be saved to a file or transferred across networks. Actually, one of the most essential
things for data persistence and transmission in real-world data applications. The pickle.dump()
function is used for this purpose.

The reverse process, Unpickling, reconstructs the object from its serialized byte stream back into its
native form again using pickle.load(). These techniques come out to be very helpful for working
with machine learning models or very large datasets to have efficient storage and retrieval without
having to recompute objects every time. This serialization process forms a significant part of model
deployment and handling big data.

Q13. Explain database connection in Python Flask.

Answer: A SQLite3 command installation is needed to initiate and create the database in Flask.
Using Flask, the database can be requested in three ways:

teardown_request() method: This is called in cases where the responses are not assured and the
exception is raised.

after_request() method: This is called after requesting the database and also sending the response
to the client.

before_request(): This method allows the database to be requested before only without passing
arguments.

Q14. In high-traffic systems, when a cache expires and a surge of client
requests overwhelms a website, what is this phenomenon called, and how

can it be mitigated?

Answer: This is known as the Dogpile effect. It happens when a cache expires, and multiple clients
simultaneously request the same data, overwhelming the system. To prevent this, a semaphore
lock can be used. A semaphore is a synchronization mechanism that controls access to shared

resources in concurrent environments, such as threads or processes. It maintains a counter
(typically an integer) that tracks the number of available resources. When a resource is requested,
the counter decreases. If the counter reaches zero, subsequent requests must wait until the
resource becomes available again.

In the case of cache rebuilding:

e When the cache expires, the first request triggers a semaphore lock, allowing only one
process to regenerate the cache.

e Otherrequests that arrive during this time are blocked (or delayed) until the cache is rebuilt.
Once the cache is refreshed, these requests are served using the new data, preventing
multiple processes from hitting the backend simultaneously.

The semaphore works because it ensures only one process at a time performs the expensive
operation of rebuilding the cache, while others wait, avoiding an overwhelming load on the system

Q15. Unlike many languages, Python doesn’t explicitly use access
specifiers. How does Python simulate the behavior of private and

protected attributes, and what are the key symbols involved?

Answer: Python doesn't have traditional access specifiers like private, protected, or public. Instead,
it uses naming conventions to mimic this behavior. A single underscore (_) before a variable or
method name indicates it's intended for internal use (like protected), while a double underscore
(__) triggers name mangling, simulating a private attribute by making it harder to access directly.
Though these are just conventions, they help signal the intended scope of use within classes.

Q16. In Python, what do the notations *args and **kwargs signify, and how

do they enhance the flexibility of function definitions?
Answer: Such notations as *args and **kwargs are powerful tools in handling variable numbers of
arguments in Python functions.

e *argsaccepts an arbitrary number of non-keyworded arguments as a tuple. That is, you can
pass any number of positional arguments without defining them explicitly in the function
signature.

e **kwargs lets you input an arbitrary number of keyworded arguments in the form of a
dictionary. This would allow you to pass named arguments that could then be processed in
the function.

Together, they provide a great deal of flexibility because functions can accept many different types
and numbers of input without strict definitions, which proves very useful in situations where the
number of inputs is not predefined.

Python Libraries

Q1. import matplotlib.pyplot as plt

plt.plot([1, 2, 3], label="Line 1")

plt.show()
The plot appears, but the legend is missing. How can | fix it?
Answer: In Matplotlib, a simple plot with the labels does not prompt the legend to appear
automatically. The plt.plot() function accepts a label argument, but by default, if you do not call
plt.legend() after plotting, then the legend will also not be shown. So what is missing here is to add
plt.legend(). This function creates the legend box in the plot. It is useful when you are plotting
several lines or plots. This helps to make the visual more understandable by letting one distinguish

one line or plot from another by their labels. Here is how you would do it: you simply add
plt.legend() right after your plt.plot() call, then before your plt.show().

Q2. import matplotlib.pyplot as plt
img = plt.imread("sample_image.png")
plt.image(img)
plt.show()
Why is the image not displaying even though | used plt.image()?

Answer: The image does not show up because there is an incorrect function call for plt.image().
Rather than plt.image(), one should use plt.imshow() if they need to display an image in
Matplotlib.The function imshow() is the short form for "image show." It has been defined only to
portray images in Matplotlib. Indeed, there isn't any such function plt.image() so the image wasn't
displayed. Now, after using plt.imshow(), the image is displayed properly on the figure.

Q3. Iwant to plot geographical data, but Matplotlib doesn’t have a built-in

function for maps. Which Python library should | use instead to plot maps?
Answer: Matplotlib isn't your first choice for geographical plotting since it isn't specialized for maps
or geographical views. Generally, you would make use of either Geopandas or Basemap.
Geopandas is an excellent extension of Pandas, and it's fantastic stuff about which you can do great
things to create and plot geospatial data, including shapefiles and GeoJSON. Another great
alternative is Folium, that works on top of Leaflet.js, the JavaScript library for interactive maps.
Folium integrates nicely to Python and allows one to create interactive maps with little code.
Alternatives for choropleth maps or where you need more control, there is also Plotly and Mapbox,
including dynamic, web-based map creation. So, depending on your needs, use one of these over
Matplotlib.

Q4. import matplotlib.pyplot as plt
fig, axs = plt.subplots(2, 2)
axs[0, 0].plot([1, 2, 3])
Only one subplot appears instead of four. What is missing in this setup to

correctly display multiple subplots?

Answer: Where we create multiple subplots using the function plt. subplots(), we actually create a
grid of plots. The problem here looks like only the last subplot is populated and the rest are not
utilized. The object axs returned by plt. subplots() is usually a 2D array, and you need to access and
plot separately every subplot of this array. In this case, you'd want to ensure that each subplot
within the grid gets filled with data. Thus, if you have a grid of 2 x 2, for instance, you would go
about accessing each individual subplot using axs[0, 1], axs[1, 0], etc, and then plot something in
each of them. Otherwise, just the first subplot will be filled; the rest will just be white.

Q5. What kind of statistical test is bartlett() used for, and how is it related

to variance?

Answer: bartlett() test in Scipy is an analysis in statistics that tests the homogeneity of variances
amongst groups. This is often simply referred to as Bartlett's Test for Equal Variances. The null
hypothesis of this test of significance states that variances of the populations are equal. It is
primarily useful when you have more than one set of data that you are comparing regarding their
variances, as you want to know if they are significantly different or not. This has very important

implications for hypothesis testing in data science, because most statistical models assume
homogeneity of variance, similar to ANOVA. If the variances are different, in general, this will
negatively impact the performance of your model. Additionally, because Bartlett's test is sensitive
to non-normality, if your data don't come from a normal distribution, you may want to use Levene's
test instead.

Q6. is a declarative library for data visualization.

Altair

4) missingno
Answer: Altair uses a declarative style in creating plots, it becomes very easy and quick to repeat
through visualizations and experiments at a fast pace when using this library. Here declarative
means while plotting any chart, we declare connection between columns to the encoding channels,
such as x-axis, y-axis, etc., and the rest related to plot details are handled automatically. we can do
aggregation and filtering and dynamic filtering are the cool feature of python Altair. It gives a heat
map that uses a text mark attribute. The code framework remains the same but changes in mark
attribute can produce different plots. It supports line charts, stacked barplot.

Q7. What is the function name to draw the streamlines using Matplotlib
package in Python?

Answer: The streamplot function is used to draw streamlines for vector fields, you will also have
control of colour and width of the line. It helps the physicists to plot fluid flow and 2D field
gradients.

Syntax: ax.streamplot(X, Y, u,v density=spacing)

Import libraries
import numpy as np
import matplotlib.pyplot as plt

Creating dataset

X =np.arange(0, 5)
y =np.arange(0, 5)

Creating grids
X, Y =np.meshgrid(x, y)

x-component to the right
u=np.ones((5,5))

y-component zero
v = np.zeros((5, 5))

fig = plt.figure(figsize = (12, 7))

Plotting stream plot
plt.streamplot(X, Y, u, v, density = 0.5)

show plot
plt.show()

XandY are 1D arrays on an evenly spaced grid,u and v are 2D arrays of velocities of x and y,density
is a float value which controls the closeness of the stream lines.

Q8. import matplotlib.pyplot as plt
plt.plot([1, 10, 100])
plt.yscale('log')
plt.show()
The plot is supposed to be logarithmic on the y-axis, but the plot appears

linear. What could be going wrong?

Answer: In this case, the problem is probably coming from not setting the scale of the axis to
logarithm. Matplotlib has provided two functions for setting the scales of the y-axis and x-axis
respectively, plt.yscale('log') and plt.xscale('log'). However, when you have very small or negative
values in your data, the log scale does not behave properly because the log of a negative number is
undefined, and the log of zero is minus infinity. So you need to make sure that your data is strictly
positive or possibly filter out or transform any zeros or negatives. That's typically where the
problem is when working with log scales.

Q9. Given three different Seaborn plots - distplot(), boxplot(), and
violinplot() - which of these plots are best suited for representing the
distribution of categorical data? Besides, how do they treat data

differently and in what cases one is preferable over the others?

Answer: All three are forms of categorical distribution plots: boxplot(), violinplot(), and boxenplot().
The most ubiquitous one is probably the boxplot(). A very easy way to get an idea of distribution by
category for a continuous variable is to use the boxplot, which also gives useful statistics such as
the median and quartiles, besides possible outliers. In fact, it's ideal to summarize and compare
categories, getting a quick overview of two groups, for example.

violinplot() This is an extension of boxplot with a Kernel Density Estimate to give a fuller view of the
distribution of data. It's handy when you think you might have multimodal data, or you want to see
more than summary statistics. That is, for example, it's useful if a category has peaks in locations
more than one, or if the distribution is left- or right-skewed.

boxenplot() is designed to handle large-sized sets of data more efficiently. It shows several
percentiles in the data, which provides a finer detail than a single boxplot would do. This is
especially useful when one works with huge sizes of data and wants to see a more fine grain
distribution of values.

So Seaborn also has catplot() allowing you to combine these plots together with facets. This will
make the kind of more complex plotting possible. You can specify the type of plot with e.g. box and
it will automatically adapt the grid according to the variables.

So all three, the boxplot, violinplot, and boxenplot, are categorical distribution plots, and each has
unique strengths depending on your type of data as well as the insights you are trying to draw.

Q10. import seaborn as sns
g = sns.FacetGrid(data, col="species")
g.map(plt.scatter, "sepal_length", "sepal_width")
The FacetGrid legend font size here is too small. How could you modify

this to increase the font size?

Answer: First, | have to comment that FacetGrid does not automatically render the legend unless
we request it to do so. Assuming there is a legend (for example, if we are using hue), we can adjust
the font size by getting a reference to the legend object and updating its properties. | would do
this:-

Now that we have the FacetGrid plot, we would need g.add_legend() in order to add a legend

within. Then, using the prop in add_legend() will allow me to directly manipulate and control the
size of the fonts used for the legend.

g.add_legend() ensures the legend is not left out in the FacetGrid.

prop={'size": 12} allows me to set the text of my legend to a larger size by changing it to 12. You
could alter this value to whatever size works for you.

Q11. Which popular Python library uses a grammar-of-graphics approach
to simplify chart plotting, and how does this method differ from Seaborn
or Matplotlib?

Answer: The grammar-of-graphics-based library is Plotly. The grammar-of-graphics approach was
inspired by the ideas from Hadley Wickham's book for R, ggplot2, and allows for rendering graphics
through layering different components in an organized manner. It helps in developing complex
plots in a way that even an end user can have an intuitive approach to the methods applied in the
process.

In the grammar-of-graphics framework, one begins with data and then defines aesthetic mappings,
adds layers, and finally details the customization of plot components. This makes it easier for users
to think systematically about the relationships between data elements, leading to a more
systematic way to present data.

For instance, you can create the overall structure of the plot by making a high-level command with
the type of data and aesthetic mappings. From there, you can add layers incrementally-like points,
lines, and titles-add as though building up a sentence in a grammar system. This allows easily
making adjustments-clear and logical-to advance your visualization without having to rewrite the
entire code.

Seaborn and Matplotlib are more imperative in nature, but whereas it simplifies many tasks and
enhances capabilities from Matplotlib, it still demands a more manual definition of what
constitutes each component of your plot. For example, you have to specify everything explicit-from
axes to the data points-in Matplotlib, which can result in pretty verbose syntax and sometimes not
as intuitive for beginners.

For example, in Matplotlib, one would have to call several functions to create the figure, axes, and
points; in Plotly, this can all be packaged into fewer, more intuitive commands. This can help you
better be productive and read your code for even the most complex visualizations.

Another space where Plotly stands out is interactivity: plots produced with the library have an
intrinsic, out-of-the-box kind of interactivity that can help stakeholders interact with data
effectively. By contrast, even though Seaborn and Matplotlib can produce stunning static
visualizations, they often require some additional effort or libraries' assistance to be interactive.
Putting all of this together, the grammar of graphics approach in Plotly is even more structured and
flexible in creating visualizations which may be much more necessary for complex datasets. This

differs from more traditional approaches used in Seaborn and Matplotlib, where you have to
manually handle each aspect of the plotting process.

Q12. import seaborn as sns
sns.bootstrap_plot([1, 2, 3])
Why is the function bootstrap_plot() not recognized in this code? How

should you correctly create a bootstrap estimate?

Answer: The function bootstrap_plot() is unknown because it does not exist in the Seaborn library.

Although Seaborn does offer various functions for any style of visualizations and statistical

analyses, bootstrap_plot() is not in there. To run a bootstrap estimation in Python, you'll usually

make use of the bootstrapped library or you can code your own using NumPy or SciPy.

Steps usually taken to make a bootstrap estimate are as follows:

Resampling: Take random samples with replacement from your data. This means you could pick a

particular data point lots of times, or never pick a particular one.

Statistical Calculation: Calculate each resample using the statistic under consideration, such as the

mean, median, or standard deviation.

Repeat: Repeat the resampling and statistical calculation lots of times-thousands-of times-to create
distribution of the statistic.

For a basic example on how one can use NumPy, here's how to do a bootstrap estimate of the
mean:

import numpy as np

data=1[1, 2, 3]

n_iterations = 1000

bootstrap_means =[]

for _in range(n_iterations):

sample = np.random.choice(data, size=len(data), replace=True)
bootstrap_means.append(np.mean(sample))

Calculate the mean and confidence intervals

bootstrap_mean = np.mean(bootstrap_means)
confidence_interval = np.percentile(bootstrap_means, [2.5, 97.5])

In this case, first we define our data as well as the number of bootstrap iterations. Then we sample
from the original data with replacement, along with the calculation of the mean for each sample
and storing it in a list. Finally, we can calculate the overall bootstrap mean and confidence intervals
from the distribution of means.

Q13. import seaborn as sns

sns.factorplot(x="day", y="total_bill", data=tips)
Factorplot seems deprecated. What’s the updated function | should use in
Seaborn to create this categorical plot?

Answer: You are right; factorplot() is deprecated in the latest versions of Seaborn. Instead, use
catplot().

The catplot() function is a flexible interface to making categorical plots and one may think of it
more like a wrapper for various plot types that include bar plot, box plot, violin plot, and so on.
Partly that's an evolution of Seaborn toward a more consistent and user-friendly API.

Here is how wecan do it:

import seaborn as sns
sns.catplot(x="day", y="total_bill", data=tips, kind="box")

Here, we are going to use catplot() in order to produce a box plot of total bills across different days
from the tips dataset. The kind parameter lets you specify the type of plot you want, such as "box,"
"violin," or "bar."

This is also such a change that draws out such ease through usage of the same function for
different types of categorical visualizations yet maintains clarity and consistency to your code.

Q14. How can | embed an interactive Bokeh plot within a Flask web app?
Should | use a different strategy for Django? (+dev)

Answer: It's quite a simple task as Flask and Bokeh get along pretty well. Here's how | would do it:
Firstly | would generate the plot in Python using Bokeh's plotting functions.

Thereafter, embed the plot in Flask, the trick is using components() from Bokeh's bokeh.embed
module. This will return the relevant HTML and JavaScript code to include the plot. Then you
would render the plot using Jinja2 templating engine which comes with Flask.

Here is a brief example:

from flask import Flask, render_template
from bokeh.embed import components
from bokeh.plotting import figure

app = Flask(__name__)

@app.route('/')

defindex():

plot = figure()

plot.circle([1, 2, 3,41, [4,7, 1, 6], size=20)

script, div = components(plot)

return render_template("index.html", script=script, div=div)
if __name__=="__main__"
app.run(debug=True)

Rendering in HTML: In the HTML file (for example, index.html), you can add the plot with the script
and div variables as follows:

<html>
<body>
{{div|safe}}

{{ script | safe }}
</body>
</html>

This method ensures that the plot is rendered dynamically, and users can interact with it directly in
the Flask app.

For Django: The overall strategy remains quite similar, but Django’s templating system is a bit
different. Instead of Flask’s Jinja2, you would use Django’s templating engine. The embedding
process would still involve Bokeh’s components() function.

But you'd normally put the Bokeh script and div into the template through context in the view
function:

from django.shortcuts import render

from bokeh.embed import components

\\end

def index(request):

plot = figure()

plot.circle([1, 2, 3], [3, 2, 1], size=20)

script, div = components(plot)

return render(request, 'index.html', {'script": script, 'div': div})

Then in the Django template, you would then embed the Bokeh plot just like you have with Flask.

Key differences between the two
Flask:-

In this case, Flask uses functions for routing and rendering. Thus one creates a function which
directly returns a template.

Django:-

In this case, Django relies on defining a view that will take the HTTP requests and return a response
with the embedded Bokeh components.

Linear Regression

Q1. How can you check if the Regression model fits the data well?

Answer: We can use the following statistics to test the model's fitness.

e R-squared: It is a statistical measure of how close the data points are to the fitted regression
line. Its value is always between a and 1. The closer to 1, the better the regression model fits
the observations.

e F-test: It evaluates the null hypothesis that the data is described by an art intercept-only
model, which is a regression with all the coefficients equal to zero versus the alternative
hypothesis that at least one is not. If the P-value for the F-test is less than the significance
level, we can reject the null hypothesis and conclude that the model provides a better fit
than the intercept-only model

e Root Mean Square Error (RMSE): It measures the average deviation of the estimates from the
observed value. How good this value is must be assessed for each project and context. For
example, an RMSE of 1,080 for a house price prediction is probably good as houses tend to
have prices over $100,000, but an RMSE of 1,000 for a life expectancy prediction is probably
terrible as the average life expectancy is around 78

Q2. In what scenarios would one prefer Mean Absolute Error (MAE) over
Mean Squared Error (MSE), and how do the mathematical properties of
each metric influence their respective sensitivity to outliers?

Answer: The MAE and MSE both are measures of error, and while picking which one to use, in most
cases, it depends on the specific goals of analysis and the characteristics of the dataset.

Scenarios for Preference

e Presence of Outliers: MAE is often preferred when the dataset contains significant outliers or
when we expect the distribution to be multimodal. In such scenarios, MAE offers a better
estimation of central tendency; therefore, the skewed values do not affect the measurement
of the error metrics. Let's take an example that will be very useful to predict the prices of
houses. In this scenario, with MSE, a couple of very high and low values may alter the
performance of the model. With MAE, this will give a better view of what the average
prediction accuracy might be.

MAE Formula:

MAE= %" lui— &

e Interpretability: MAE is intuitively better because it forms the average absolute
difference between the predictions made by a model and the true values. It provides
stakeholders with an intuition of the actual performance of the model in practice. As
an example, if we say the MAE is $5,000, it directly notifies the reader that, on
average, our predictions were off by this amount. This can easily be understood
compared to an MSE number.

e MSE Formula:

MSE = + ¥, (y; -)°

=> Mathematical Properties:

o Sensitivity to outliers: MSE squares the residuals, so larger errors are
penalized more severely. This feature is handy when outliers are to be
important and we want our model to put strong priority on minimizing those
larger deviations. For instance, in risk assessment models in which extreme

values can identify critical risks, MSE would ensure these risks were
minimized.

o Linearvs. Quadratic Scaling: MAE is linear in the error whereas MSE is
quadratic. This fundamental difference makes MSE a good choice for cases
with normally distributed errors in scenarios in which we want to weight the
larger errors more. However, if our dataset has errors that could be skewed,
then MAE would better represent because it wouldn't exaggerate the
influence of the outliers.

More in everyday language, my choice would depend on the context of the data involved, the
sensitivity to outliers, and whether or not interpretability of results was relevant for the estimation.

Q3. What's the difference between Covariance and Correlation?

Answer: Covariance measures whether variation in one variable results in a variation in another
variable, and deals with the linear relationship of only variables in the dataset. Its value can range
from negative infinity to positive infinity Simply speaking Covariance indicates the direction of the
linear relationship between variables.

Y

X
cov(XY)<0 cov(XY)=0 cov(XY)>0

e Correlation measures how strongly two or more variables are related to each other. Its
values are between -1 to 1. Correlation measures both the strength and direction of the
linear relationship between two variables. Correlation is a function of the covariance.

Q4. Explain the intuition behind Gradient Descent algorithm

I ———
Answer: Gradient descent is an optimization algorithm that’s used when training a machine
learning model and is based on a convex function and tweaks its parameters iteratively to minimize

a given function to its local minimum (that is, slope = 0).

For a start, we have to select a random bias and weights, and then iterate over the slope function to
get a slope of 0.

The way we change update the value of the bias and weights is through a variable called the
learning rate. We have to be wise on the learning rate because choosing:

e Asmall leaning rate may lead to the model to take some time to learn
e Alarge learning rate will make the model converge as our pointer will shoot and we’ll not be

able to get to minima.

Big learning rate Small learning rate

VAV

Q5. Explain the disadvantages of R-squared and how to address those?
Answer:

1. Overfitting: R-squared can be misleading when comparing models with different numbers of
predictors. A higher R-squared value can be achieved simply by adding more independent
variables, even if those variables are not significant. This can lead to overfitting, where the
model performs well on the training data but poorly on unseen data.

Addressing Overfitting:

e Use Adjusted R-squared, which adjusts the R-squared value for the number of predictors in
the model. It accounts for the degrees of freedom and penalizes the addition of
non-significant predictors. The formula for Adjusted R-squared is:

Adjusted R* L= ((1= H")(n : 1)]

n P J

where n is the number of observations and ppp is the number of predictors.

2. Lack of Interpretability: R-squared does not provide insights into the individual
contributions of each predictor or their significance. A high R-squared value does not imply
that the model is appropriate or that the predictors are meaningful.

Addressing Lack of Interpretability:

e Use statistical tests (like t-tests for coefficients) to evaluate the significance of each
predictor. Additionally, employing other metrics such as p-values, confidence intervals, and
feature importance can help provide a clearer picture of the relationships in the data.

3. Non-linearity: R-squared is not suitable for evaluating models that exhibit non-linear
relationships between the dependent and independent variables. A high R-squared in such
cases might lead to false confidence in the model.

Addressing Non-linearity:

e Explore alternative modeling techniques like polynomial regression, decision trees, or
non-linear models. Additionally, using residual plots to assess the distribution of residuals
can help identify non-linear patterns that need to be addressed.

4. Sensitivity to Outliers: R-squared can be disproportionately influenced by outliers, which
may distort the model fit and lead to misleading interpretations.

Addressing Sensitivity to Outliers:

e Utilize robust regression techniques that are less affected by outliers, such as RANSAC
(RANdom SAmple Consensus) or Huber regression. Checking residual plots for outliers and
leveraging metrics like Mean Absolute Error (MAE) can also provide more resilient insights.

Q6. Provide an intuitive explanation of ransac regression algorithm.

Answer: RANSAC, or RANdom SAmple Consensus, is a robust regression technique known to be
quite helpful when faced with data sets heavily contaminated by many outliers.

The algorithm starts by randomly selecting some small subset of the data. Ideally, this subset
contains inliers—points fitting the model well—and then fits a model to this subset. RANSAC then
assesses how many other points from the dataset are close to this model to make up a "consensus
set" of inliers.

This process is repeated multiple times with different random samples, and at the end, the model
which holds the largest consensus set is selected. This approach allows RANSAC to effectively
ignore outliers and find a model best representing the trend in the data.

It is especially useful in applications involving computer vision, where noise and outliers are
common. More generally, RANSAC provides a robust approach to model fitting that is least sensitive
to anomalous data points.

Q7. How would you detect collinearity, and what is multicollinearity?

Answer: Multicollinearity is a kind of regression problem where two or more independent variables
are said to be so correlated that they tend to provide redundant information about the response
variable. The problem usually arises when there is instability in the coefficient estimates, because
changes to very small effects in the model or data can have some significant influence on the
outcome. Multiple methods can be used to detect multicollinearity:-

e Correlation Matrix: | would begin with the correlation matrix of the independent variables.
High correlation coefficients (usually higher than 0.8 or 0.9) can indicate a possible
occurrence of multicollinearity.

e Variance Inflation Factor (VIF): It is a more technical method. VIF determines to what extent
a coefficient's variance is inflated by the existence of multicollinearity. VIF greater than 10 is
often used as a rule of thumb for the presence of multicollinearity.

Here, R*2 is the coefficient of determination of a regression of the variable in question on all
the other independent variables.

e Condition Index: In this method, eigenvalues are calculated from the correlation matrix. A
high condition index, usually greater than 30, implies multicollinearity problem.

e Scatter Plots: | would also plot scatter diagrams to visualize relationships between pairs of
independent variables looking for evidence of a linear relationship between them that
would indicate collinearity.

By using these techniques, | can check effectively for multicollinearity and take appropriate
measures, such as deleting or collapsing variables, to make the model stronger.

Q8. Can you explain what an unrepresentative dataset is and how you
would diagnose it?

Answer: An unrepresentative dataset is one that does not accurately reflect the population or
phenomenon it is intended to model. This can occur due to several reasons, such as biased
sampling, missing data, or over-representation of certain groups while under-representing others.

For example, if we were studying customer preferences in a city but only surveyed individuals from
affluent neighborhoods, our dataset would likely be unrepresentative of the city's diverse
population.

Diagnosing an Unrepresentative Dataset

1. Descriptive Statistics: | would start by analyzing basic descriptive statistics, such as means,
medians, and standard deviations, across key variables. If these statistics differ significantly

from what is expected based on known population parameters, it might indicate
unrepresentativeness.

2. Visualization: Creating visualizations like histograms, box plots, or bar charts can help me
understand the distribution of data. Comparing these distributions to known population
distributions can reveal discrepancies.

3. Sampling Method Analysis: | would examine the sampling method used to collect the data.
If the sampling process was not random or if certain groups were systematically excluded, it
could lead to an unrepresentative dataset.

4. Stratification: | might segment the dataset based on key demographics or characteristics
and assess whether each segment is adequately represented. Under-representation of any
segment can lead to biases in the overall analysis.

5. Comparative Analysis: If | have access to external datasets or benchmarks, | would compare
the distribution of key features in my dataset to these sources. Significant differences could
signal an unrepresentative sample.

By employing these diagnostic techniques, | can identify unrepresentative datasets and take
corrective actions, such as collecting additional data or adjusting the analysis approach to ensure
more accurate and reliable conclusions.

Q9. How would you detect heteroskedasticity in a regression model?

Answer: Heteroskedasticity refers to a condition in regression analysis where the variance of the
errors is not constant across all levels of the independent variables. This can lead to inefficiencies in
the estimates and affect hypothesis tests. Here are several methods | would use to detect
heteroskedasticity:

1. Visual Inspection:

a. Residuals vs. Fitted Plot: | would plot the residuals against the fitted values. If the
spread of residuals increases or decreases with the fitted values (e.g., a fan or cone
shape), this indicates heteroskedasticity.

2. Statistical Tests:

a. Breusch-Pagan Test: This test checks for linear relationships between the squared
residuals and the independent variables. A significant p-value indicates
heteroskedasticity.

b. White Test: This is a more general test that doesn't assume a specific functional form
of the relationship between residuals and predictors. Like the Breusch-Pagan test, a
significant result suggests heteroskedasticity.

c. Variance Inflation Factor (VIF): Although primarily used for multicollinearity, a high
VIF can also suggest issues that may relate to heteroskedasticity, especially if
predictors are correlated.

d. Goldfeld-Quandt Test: This test involves splitting the dataset into two groups and
comparing the variances of the residuals. A significant difference suggests
heteroskedasticity.

By utilizing these methods, | can effectively diagnose heteroskedasticity in a regression model,
allowing for appropriate adjustments, such as transforming the dependent variable or using robust
standard errors to obtain valid inference.

Q10. How would you address the problem of heteroskedasticity that arises
from measurement error?

Answer: Heteroskedasticity due to measurement error can lead to biased and inefficient estimates
in regression models. To address this issue, | would consider the following approaches:

1. Improved Measurement: The first step is to enhance the accuracy of data collection.
Implementing more precise measurement tools or methods can reduce measurement error,
leading to a more reliable dataset.

2. Instrumental Variables (IV): If the measurement error is systematic (i.e., affecting certain
observations consistently), | might consider using instrumental variables. An instrumental
variable is correlated with the independent variable but not directly related to the
dependent variable. This can help provide consistent estimates in the presence of
measurement error.

3. Error-in-Variables Models: | would consider using models specifically designed to handle
measurement error, such as error-in-variables models. These models account for
measurement error in the independent variables and can provide unbiased estimates of
coefficients.

4. Weighted Least Squares (WLS): If the heteroskedasticity pattern can be identified, | might
apply weighted least squares regression. By assigning weights to observations based on the
estimated variance of the errors, WLS can stabilize the variance across the dataset.

5. Bootstrapping: If the measurement error is severe and difficult to quantify, | could use
bootstrapping techniques to assess the variability of the estimates and obtain robust
standard errors.

By employing these strategies, | can effectively mitigate the impact of heteroskedasticity caused by
measurement error, ensuring that the regression model provides valid and reliable results.

Q11. How would you compare models using the Akaike Information
Criterion (AIC)?

Answer: The Akaike Information Criterion (AIC) is a metric used to compare the goodness-of-fit of
different models while penalizing model complexity. It's particularly useful in model selection
when you're trying to balance fit and parsimony.

The AIC formula is:

AIC = 2k — 21n(L)

Where:

e kisthe number of parameters in the model.
e Listhe likelihood function, which measures how well the model fits the data.

To compare models using AIC:

1. Compute AIC: For each model, | would calculate the AIC value.
Lower AIC is better: The model with the lowest AIC value is considered the best because it
strikes the best balance between fit (log-likelihood) and complexity (number of parameters).
3. Relative AIC Differences: While comparing, differences in AIC greater than 10 suggest strong
evidence for preferring the model with the lower AIC. Differences between 0-2 suggest
models are nearly indistinguishable, while 4-7 indicates some moderate evidence.

By using AIC, | can objectively select the best model without overfitting or unnecessarily
complicating the model.

To compare models using AIC:

e Compute AlIC: For each model, | would calculate the AIC value.
e Lower AlIC is better: The model with the lowest AIC value is considered the best because it
strikes the best balance between fit (log-likelihood) and complexity (number of parameters).

e Relative AIC Differences: While comparing, differences in AIC greater than 10 suggest strong
evidence for preferring the model with the lower AIC. Differences between 0-2 suggest
models are nearly indistinguishable, while 4-7 indicates some moderate evidence.

By using AIC, | can objectively select the best model without overfitting or unnecessarily
complicating the model.

Q12. What are some advantages of using Gradient Descent over Ordinary

Least Squares (OLS) for linear regression?
Answer: While OLS is a classic and efficient method for solving linear regression when the dataset is
relatively small, Gradient Descent offers some key advantages in specific scenarios:

1. Scalability: Gradient Descent is more suitable for large datasets or high-dimensional data.
OLS requires inverting a matrix, which can be computationally expensive as the dataset
grows. Gradient Descent, on the other hand, works iteratively and is more memory-efficient.

2. Works with Non-Invertible Matrices: OLS can fail if the matrix of features (X) is singular or
ill-conditioned. Gradient Descent doesn't require matrix inversion and can still provide a
solution.

3. Flexibility with Optimization: Gradient Descent allows the use of various optimization
techniques (e.g., Stochastic Gradient Descent, Mini-Batch Gradient Descent) and learning
rates, making it adaptable to different problem settings and constraints.

4. Handles Regularization Easily: Gradient Descent can be easily extended to handle
regularization techniques like Lasso (L1) or Ridge (L2), which add penalties to the model to
avoid overfitting. This is more flexible than directly applying OLS in such cases.

Overall, Gradient Descent is preferred when dealing with large, complex datasets, or when
regularization and scalability are key considerations.

Q13. How would you check if a linear model follows all regression
assumptions?

Answer: To ensure a linear regression model is valid, | would verify it meets the following key
assumptions:

1. Linearity: l would check if the relationship between the independent and dependent
variables is linear. This can be done by plotting residuals vs. fitted values; any patterns in the
plot suggest non-linearity.

2. Independence: To verify that residuals are independent, | might use the Durbin-Watson test,
which checks for autocorrelation in the residuals. A value close to 2 indicates no
autocorrelation.

3. Homoskedasticity: This assumes constant variance of residuals across all levels of the
independent variables. | would check this using a residuals vs. fitted values plot. If the
variance of residuals increases or decreases (like a fan shape), it indicates
heteroskedasticity. | could also perform the Breusch-Pagan test.

4. Normality of Residuals: | would check whether residuals are normally distributed using a
Q-Q plot or a histogram of residuals. Skewed or non-bell-shaped distributions may indicate
a violation. The Shapiro-Wilk test can also be used for a formal test of normality.

5. No Multicollinearity: | would calculate the Variance Inflation Factor (VIF) for each
independent variable. A VIF value above 10 indicates strong multicollinearity, which can
distort model coefficients.

By systematically testing these assumptions, | can validate the appropriateness of my linear
regression model.

Q14. How would you implement a linear regression function in SQL?

Answer: To implement linear regression in SQL, | would approach it by calculating the slope (31)
and intercept (30) using the standard regression formulas. Here’s how I'd go about it:-

e Calculate Means: First, | would compute the means of both the independent variable X and
the dependent variableY.
e Covariance and Variance: | would then calculate the covariance of X and Y, and the variance
of X. This is key to determining the slope (31).
e Formula for Slope and Intercept:
o Theslope Blis calculated as the ratio of the covariance to the variance of X.

fo = mean(Y) — f; - mean(X)

o Theintercept 0 is calculated by using the formula
o Here’s the SQL query I'd use to implement it:

WITH summary_stats AS (
SELECT

AVG(X) AS avg_X,
AVG(Y) AS avg_Y,
SUM((X - AVG(X)) * (Y - AVG(Y))) OVER () AS covariance,
SUM(POWER((X - AVG(X)), 2)) OVER () AS variance_X
FROM
your_table
)
SELECT
avg_Y - (covariance / variance_X) * avg_X AS intercept, -- Calculate the intercept (0)
(covariance / variance_X) AS slope -- Calculate the slope (1)
FROM
summary_stats;

This approach calculates the necessary summary statistics to derive the regression equation
directly in SQL. It's scalable and avoids having to load the data into another tool. Once the slope
and intercept are computed, we can use them to make predictions.

Q15. What are some challenges you might face when using a supervised
regression model?

Answer: There are several challenges that can arise when using supervised regression models:

1. Overfitting: If the model is too complex, it may fit the training data well but fail to generalize
to new, unseen data. Regularization techniques like Ridge or Lasso can help mitigate this by
adding penalties to large coefficients.

2. Multicollinearity: When predictors are highly correlated, it can make the model unstable,
causing inflated standard errors and unreliable coefficient estimates. Detecting
multicollinearity using VIF (Variance Inflation Factor) and addressing it through
dimensionality reduction methods like PCA or by removing correlated variables can help.

3. Heteroskedasticity: This occurs when the variance of errors is not constant across all levels
of the independent variables, violating one of the key regression assumptions. It can lead to
inefficient estimates. To address it, I'd use methods like weighted least squares or
log-transforming the target variable.

4. Non-Linearity: Standard linear regression assumes a linear relationship between the
predictors and the target variable. If the relationship is non-linear, the model will perform

poorly. Introducing polynomial features or using more complex models like decision trees
or neural networks can help.

5. Outliers: Extreme values can disproportionately affect the model, especially when using
error metrics like Mean Squared Error (MSE), which amplifies the impact of outliers. Robust
regression techniques or metrics like Mean Absolute Error (MAE) can minimize their effect.

6. Data Quality and Missing Values: Poor data quality or missing values can hinder model
performance. Imputation techniques or careful data preprocessing steps are necessary to
address this.

7. Feature Selection: Including irrelevant features can lead to overfitting and increased model
complexity. Techniques like backward elimination, regularization (Lasso), or feature
importance from tree-based models can assist in selecting the most relevant features.

These are some common challenges, and handling them effectively often requires careful model
evaluation and adjustments based on the data at hand.

Q16. Why would you use normalization versus standardization for linear
regression?

Answer: The choice between normalization and standardization depends on the nature of the data
and the model requirements.

1. Normalization: I'd use normalization (scaling features to a [0,1] range) when the data
doesn’t follow a Gaussian (normal) distribution or when | want to ensure all features
contribute equally to the model. It's useful when we have variables of different units or
scales and when outliers can disproportionately affect the model. For example, when using
models like KNN or Neural Networks that depend on distance metrics, normalization helps
to bring all features onto a similar scale.

2. Standardization: I'd apply standardization (z-score scaling, where the data is transformed to
have a mean of 0 and a standard deviation of 1) when the model assumes a normal
distribution of the features, as in the case of linear regression. Standardization is generally
more robust to outliers, and because regression is sensitive to the magnitude of input
features, standardization helps the algorithm converge faster during optimization.

In the context of linear regression, I'd typically lean towards standardization. This is because it
makes gradient descent optimization more efficient, and it ensures that features with larger scales
don’t dominate the model’s coefficients. Standardization is particularly helpful when dealing with
models that involve regularization techniques like Ridge or Lasso.

Q17. How is hypothesis testing used in linear regression?

Answer: Hypothesis testing is fundamental to linear regression as it helps us evaluate the
significance of relationships between independent and dependent variables.

First, we formulate two hypotheses: the null hypothesis (H,), which states that there is no effect of
an independent variable on the dependent variable (typically that the coefficient is zero), and the
alternative hypothesis (H,), which suggests that there is a significant effect (the coefficient is not
zero).

Once we estimate the regression coefficients using methods like Ordinary Least Squares (OLS), we
perform hypothesis tests for each variable. This involves calculating the t-statistic for each
coefficient to assess how far the estimated value is from zero, expressed in terms of standard errors.
The corresponding p-value helps us determine the likelihood of observing our results if the null
hypothesis were true.

If the p-value is below a predetermined threshold, usually 0.05, we reject the null hypothesis,
indicating that the variable has a statistically significant effect on the dependent variable.
Conversely, if we do not reject the null hypothesis, it suggests that the variable may not
significantly contribute to the model.

Additionally, we can assess the overall model fit using the F-test, which tests whether at least one
predictor in the model is significantly associated with the outcome variable. This holistic approach,
combined with confidence intervals for the coefficients, allows us to make informed decisions
about the variables included in the model and their importance.

Overall, hypothesis testing in linear regression provides a rigorous framework for understanding
the relationships in our data and guides our interpretation of the results.

Q18. Can you name some evaluation metrics for regression models and
explain when you would use each?

Answer: There are several evaluation metrics that are commonly used to assess the performance of
regression models, each suited for different contexts:

1. Mean Absolute Error (MAE): This metric calculates the average of the absolute differences
between predicted and actual values. I’d use MAE when | want a clear interpretation of
average errors in the same units as the target variable. It’s robust to outliers, making it ideal
when the data might contain extreme values.

2. Mean Squared Error (MSE): MSE averages the squared differences between predicted and
actual values. It’s particularly useful when | want to emphasize larger errors since squaring
amplifies their impact. This is beneficial when my model needs to minimize significant
errors.

3. Root Mean Squared Error (RMSE): RMSE is the square root of MSE, allowing me to interpret
the error in the same units as the target variable. | would use RMSE when | want to
understand the standard deviation of prediction errors, as it provides insight into the
model's predictive accuracy.

4, R-squared (Coefficient of Determination): R-squared indicates the proportion of variance in
the dependent variable explained by the independent variables. | find this metric helpful for
assessing overall model fit, but I’'m cautious since it can be misleading, particularly with
multiple predictors.

5. Adjusted R-squared: This is a modified version of R-squared that accounts for the number of
predictors in the model. | prefer using adjusted R-squared when comparing models with
different numbers of predictors, as it provides a more accurate measure of performance by
penalizing unnecessary variables.

6. Mean Absolute Percentage Error (MAPE): MAPE calculates the average absolute percentage
error between predicted and actual values. | would use it when | want to express errors as a
percentage, which can be more intuitive. However, I'd be careful with cases where actual
values are zero, as it could become undefined.

7. Median Absolute Error (MedAE): MedAE gives the median of the absolute differences
between predicted and actual values. | use it when | want a measure that is robust to
outliers and provides a better summary in skewed datasets.

In summary, the choice of evaluation metric really depends on the specific context of the regression
problem, the data characteristics, and how | want to interpret the results. Each metric provides

unique insights that can guide model improvement and decision-making.

Logistic Regression

Q1. Why is Logistic Regression called regression and not Classification?

Answer: Although the task we are targeting in logistic regression is a classification, logistic
regression does not actually individually classify things for you: it just gives you probabilities (or log
odds ratios in the logit form).

The only way logistic regression can actually classify stuff is if you apply a rule to the probability
output. For example, you may round probabilities greater than or equal to 50% to 1, and
probabilities less than 50% to 0, and that’s your classification.

Q2. What is the difference between linear and logistic regression?

Answer: Linear and logistic regression are both fundamental statistical techniques used in
predictive modeling, but they serve different purposes and operate under different assumptions.

Nature of the Dependent Variable:

e Linear Regression: This is used when the dependent variable is continuous. For example,
predicting house prices based on various features like size, location, and age. The output
can take any real value, which means it can range from negative to positive infinity.

e Logistic Regression: This is used when the dependent variable is categorical, particularly
binary. For instance, predicting whether an email is spam (1) or not spam (0). The outputisa
probability that can be transformed into a class label.

Model Equation:

e Linear Regression: The relationship between the independent variables and the dependent
variable is modeled as a linear equation: y=p0+B1x1+p2x2+...+fnxn+€ where y is the
continuous output, B represents coefficients, x are the predictors, and € is the error term.

e Logistic Regression: It uses the logistic function to model the probability that the dependent
variable belongs to a particular category. The equation looks like this:

uual | Where P represents the predicted probability of the

positive class.

Output Interpretation:

e Linear Regression: The output is interpreted as the expected value of the dependent
variable for given independent variables. It provides a direct prediction.

e Logistic Regression: The output is interpreted as a probability, which can then be
thresholded (usually at 0.5) to make a binary classification. For example, if the predicted
probability is above 0.5, we classify it as the positive class.

Assumptions:

e Linear Regression: Assumes a linear relationship between independent and dependent
variables, homoscedasticity (constant variance of errors), and normally distributed errors.

e Logistic Regression: Does not require a linear relationship between independent and
dependent variables, but it assumes that the log-odds of the dependent variable is linearly
related to the independent variables.

Error Measurement:

e Linear Regression: Typically evaluated using metrics like Mean Squared Error (MSE) or
R-squared.

e Logistic Regression: Evaluated using metrics such as accuracy, precision, recall, F1-score,
and AUC-ROC.

In summary, while both linear and logistic regression are valuable tools in data analysis, they are
applied to different types of problems based on the nature of the dependent variable and the
relationships being modeled.

Q3. Compare Support Vector Machines (SVM) and Logistic Regression in
terms of how they handle outliers.

Answer: Both Support Vector Machines (SVM) and Logistic Regression are popular algorithms for
classification tasks, but they handle outliers quite differently.

1. Sensitivity to Outliers:

e Logistic Regression: This algorithm is generally sensitive to outliers because it tries to find a
decision boundary that best fits the training data by minimizing the log loss. Outliers can
significantly influence the coefficients, leading to a skewed model. For example, a single
outlier can pull the decision boundary towards it, impacting the model's performance on
normal data points.

e Support Vector Machines (SVM): SVMs are more robust to outliers, particularly in their
traditional form. They focus on maximizing the margin between classes by considering only
the support vectors (the data points that are closest to the decision boundary). Since
outliers often do not fall within the margin, they have less influence on the model compared
to Logistic Regression. However, SVM's performance can still be affected if outliers are
present among the support vectors.

2. Decision Boundary:

e Logistic Regression: The decision boundary in Logistic Regression is determined by the
coefficients learned from all data points. Since outliers can affect these coefficients, the
resulting decision boundary may not generalize well to new, unseen data.

e Support Vector Machines (SVM): SVM constructs a decision boundary based on the support
vectors and tries to create the widest margin possible. This means that if an outlier does not
affect the support vectors, it won't significantly impact the model's performance.

3. Use of Regularization:

e Logistic Regression: Regularization techniques like L1 (Lasso) and L2 (Ridge) can help
mitigate the impact of outliers by penalizing large coefficients. This can improve model
robustness, but it requires careful tuning of the regularization parameter.

e Support Vector Machines (SVM): In SVM, the parameter CCC controls the trade-off between
maximizing the margin and allowing misclassifications. A smaller CCC value makes the SVM
more tolerant to misclassifications (including outliers), while a larger CCC focuses on
classifying all points correctly, which may lead to overfitting if outliers are present.

4. Kernel Trick:

e Logistic Regression: It operates in the original feature space and does not inherently handle
non-linear relationships unless transformed explicitly.

e Support Vector Machines (SVM): SVMs can employ kernel functions to transform the input
space, allowing for more flexibility in capturing complex relationships. This capability can
also help mitigate the influence of outliers, as SVM can find a more suitable decision
boundary in transformed spaces.

Q4. Why don’t we use Mean Squared Error (MSE) as a cost function in
logistic regression?

Answer: While mean squared error (MSE) is commonly used in linear regression, it's not the ideal
choice for logistic regression. The primary reason for this is the nature of the logistic sigmoid
function, which maps values to a range of 0 to 1.

Here's why MSE is not suitable for logistic regression:

e Non-convexity: When used with the logistic sigmoid function, MSE results in a non-convex
optimization problem. This means there might be multiple local minima, making it difficult
for optimization algorithms to find the global minimum, which corresponds to the optimal
model parameters.

e Sensitivity to outliers: MSE is sensitive to outliers, as the squared difference between the
predicted and actual values can become very large, disproportionately affecting the overall
cost. In logistic regression, outliers can significantly impact the model's performance.

Instead, we typically use cross-entropy loss as the cost function in logistic regression.
Cross-entropy is specifically designed for classification problems and addresses the shortcomings
of MSE. It is convex, making optimization easier, and is less sensitive to outliers.

In summary, while MSE might seem like a straightforward choice, its limitations in the context of
logistic regression make it unsuitable. Cross-entropy is a more appropriate and effective cost
function for this task.

Q5. Can you explain the difference between the softmax and sigmoid
functions?

Answer: Both softmax and sigmoid functions are commonly used in machine learning, particularly
in classification tasks. However, they serve different purposes and have distinct characteristics.

Sigmoid Function:

e Output range: Maps values to a range of 0 to 1.
e Purpose: Often used in binary classification problems, where the output represents the
probability of belonging to one of two classes.

e Formula:o(x)=1/(1+e”(-x))
Softmax Function:

e Qutput range: Maps a vector of values to a probability distribution, where each element
represents the probability of belonging to a corresponding class.

e Purpose: Used in multi-class classification problems, where the output represents the
probability distribution over all possible classes.

Formula: softmax(x)_i = e (x_i) / Z(e™(x_j))
Key Differences:

e Output: Sigmoid produces a single value, while softmax produces a vector of probabilities.
Purpose: Sigmoid is suitable for binary classification, while softmax is better suited for
multi-class classification.

e Normalization: Softmax ensures that the sum of the output probabilities equals 1,
representing a valid probability distribution. Sigmoid does not have this property.

In summary, while both functions are used in classification tasks, the sigmoid function is
appropriate for binary classification, and the softmax function is better suited for multi-class
classification problems where a probability distribution over all classes is desired.

Q6. Why is the binary cross-entropy loss function convex in logistic
regression?

Answer: The binary cross-entropy loss function is convex in logistic regression due to the following
properties:

e Convexity of the logistic sigmoid function: The logistic sigmoid function, o(x) =1/ (1 +
eM(-x)), is itself a convex function. This means that any line segment connecting two points
on the curve lies above the curve.

e Composition of convex functions: The binary cross-entropy loss function can be expressed
as a composition of convex functions:

o The negative log function, -log(x), is convex for x > 0.
o The logistic sigmoid function, o(x), is convex.

e The composition of two convex functions is also convex. Therefore, the binary cross-entropy
loss function, which is a composition of the negative log function and the logistic sigmoid
function, is convex.

e Convexity of the sum: The binary cross-entropy loss function is typically calculated as the
sum of the cross-entropy losses for individual data points. The sum of convex functions is
also convex.

In summary, the convexity of the binary cross-entropy loss function in logistic regression is a result
of the convexity of the logistic sigmoid function, the composition of convex functions, and the
convexity of the sum. This convexity property is crucial for optimization algorithms to find the
global minimum of the loss function, ensuring that the model converges to the optimal solution.

Q7. Can you explain the vectorized implementation of logistic regression?
Answer: Understanding Vectorization

Vectorization is a technique in numerical computing that involves performing operations on entire
arrays or matrices at once, rather than element-by-element. This can significantly improve
computational efficiency, especially for large datasets.

Logistic Regression Equation

The logistic regression hypothesis function is given by:
h_0(x) = g(6"T * x)

where:

o g(z)=1/(1+eN(-z))isthesigmoid function.
e 0isthe parameter vector.
e xistheinput feature vector.

Vectorizing the Hypothesis Function

e Represent data in matrices:
o X: A matrix where each row represents a training example, and each column

represents a feature.
o y:Acolumn vector containing the corresponding labels (0 or 1).

o 6:Acolumn vector containing the parameters.
e Calculate the hypothesis function:

o h=g(X*8)
o This matrix multiplication computes the hypothesis for all training examples in a
single operation.
e \Vectorizing the Cost Function
o The cost function for logistic regression is:
o J(8)=(1/m) " Z(y(i) * log(h_6(x(i))) + (1 - y(i)) * log(1 - h_B(x(i))))
e C(Calculate the log terms:

o log_h=log(h)
o log_1_minus_h=log(1-h)
e Calculate the cost:

o J=(1/m)*sum((y *log_h)+((1-y) * log_1_minus_h))
e Vectorizing the Gradient
o The gradient of the cost function is:

9J/06_j = (1/m) * Z((h_8(x(i)) - y(i)) * x_j(i))

1. Calculate the difference:
1.1. delta=h-y
2. Calculate the gradient:
2.1. grad=(1/m)* (X T * delta)

Benefits of Vectorization

e Efficiency: Matrix operations are often optimized in numerical libraries, leading to significant
speed improvements.
Readability: Vectorized code is often more concise and easier to understand.
Consistency: It ensures consistent calculations across all training examples.

By vectorizing the logistic regression implementation, you can significantly improve its
computational efficiency and make it suitable for handling large datasets.

Q8. If you know there are outliers in your data, would you still use logistic
regression?

Answer: Yes, logistic regression can still be used with outliers, but it's important to be aware of their
potential impact and take appropriate measures.

Here's why:

e Robustness: Logistic regression is relatively robust to outliers compared to some other
algorithms. The sigmoid function helps to dampen the influence of extreme values.

e OQutlier detection: You can use techniques like standard deviation or interquartile range
(IQR) to identify outliers and decide how to handle them.

However, there are some considerations:

e Impact on model performance: Outliers can still affect the model's performance, especially
if they are numerous or influential.

e Data cleaning: If outliers are deemed to be errors or anomalies, it might be beneficial to
clean the data by removing or correcting them.

e Robust regression techniques: For extreme cases of outliers, consider using robust
regression techniques like Huber loss or least absolute deviations (LAD) regression.

In conclusion, while logistic regression can handle outliers to some extent, it's essential to assess
their impact on your model and consider appropriate strategies to mitigate their influence. If
outliers are particularly problematic, exploring robust regression techniques might be a worthwhile
option.

Q9. When would you choose Support Vector Machines (SVM) over Logistic
Regression, and vice versa?

Answer: SVM (Support Vector Machine) and Logistic Regression are both powerful classification
algorithms, but they have different strengths and weaknesses. The best choice for a particular
problem depends on several factors:

SVM:

Advantages:

e Handles high-dimensional data well.

e Effective with small datasets.

e Can handle non-linear decision boundaries.

e Can be used for both classification and regression.

Disadvantages:

e Can be computationally expensive for large datasets.
e Choosing the right kernel can be challenging.
e lessinterpretable than logistic regression.

Logistic Regression:
Advantages:

e Produces probabilistic outputs, making it easier to interpret.
e Fasterto train and predict than SVM for large datasets.
e Can be easily regularized to prevent overfitting.

Disadvantages:

e Assumes linear separability between classes.
e May not perform well with complex, non-linear decision boundaries.

When to use SVM:

Small datasets: SVM can perform well with limited data.

Non-linear decision boundaries: If the data is not linearly separable, SVM can handle
complex patterns.

High-dimensional data: SVM can handle features with many dimensions.

Need for generalization: SVM is good at generalization, especially with regularization
techniques.

When to use Logistic Regression:

Large datasets: Logistic regression is faster and more efficient for large datasets.
Linear separability: If the data is linearly separable, logistic regression is a good choice.
Interpretability: Logistic regression provides probabilistic outputs that are easier to
interpret.

e Need for regularization: Logistic regression can be easily regularized to prevent overfitting.

Q10. How would you compare Naive Bayes and Logistic Regression for
solving classification problems?

Answer: Both Naive Bayes and Logistic Regression are popular algorithms for classification tasks,
but they have different assumptions and strengths. Here’s a comparison:

Naive Bayes:

e Assumption of Independence: Naive Bayes assumes that features are conditionally
independent given the class label, which simplifies computations. This assumption often
holds in practice for text classification (e.g., spam detection).

e Performance with Small Datasets: It performs well with small datasets and can be effective
even when the independence assumption is violated to some extent.

e Speed and Efficiency: Naive Bayes is computationally efficient, both in training and
prediction, making it suitable for real-time applications.

e Works Well with Categorical Data: It's particularly effective for categorical data, using
probability distributions (Gaussian, Multinomial, Bernoulli) depending on the data type.

Logistic Regression:

e No Independence Assumption: Logistic Regression does not assume independence among
features, making it more flexible in capturing relationships between them.

e Interpretability: It provides coefficients that can be easily interpreted, offering insights into
how each feature affects the prediction.

e Linear Decision Boundary: Logistic Regression is best for linearly separable data. It can
struggle with complex decision boundaries unless transformed features are used.

e Requires More Data: Logistic Regression may require larger datasets to achieve stable
estimates, especially as the number of features increases.

In summary, | would choose Naive Bayes for simpler, fast classification tasks, especially with
categorical data or text. Logistic Regression would be preferred for its interpretability and flexibility
in handling continuous data without the independence assumption. The choice depends on the
data characteristics and the specific problem context.

Q11. Can logistic regression be used for an imbalanced classification
problem?

Answer: Yes, logistic regression can be used for imbalanced classification problems. However, it's
important to be aware of the potential challenges and take appropriate measures to address them.

Challenges of Imbalanced Data in Logistic Regression:

e Bias towards the majority class: Logistic regression, by default, tends to be biased towards
the majority class in imbalanced datasets. This is because the algorithm aims to minimize
the overall error, which can lead to neglecting the minority class.

Strategies to Address Imbalanced Data:

1. Oversampling:
o Random oversampling: Replicates samples from the minority class to balance the
dataset.
o SMOTE (Synthetic Minority Over-sampling Technique): Generates new synthetic
samples for the minority class based on existing ones.
2. Undersampling:
o Randomly removes samples from the majority class to balance the dataset.
o Tomek links: Removes pairs of samples from different classes that are very close to
each other.
3. Class weighting:
o Assigns higher weights to the minority class during training to give it more
importance.
4. Ensemble methods:
o Combine multiple models, such as random forests or gradient boosting, to improve
performance on imbalanced datasets.
5. Cost-sensitive learning:
o Adjust the cost function to penalize misclassification of the minority class more
heavily.

Choosing the Right Strategy:

The best strategy depends on the specific characteristics of your dataset and the desired trade-offs
between accuracy and class balance. Experimentation with different techniques is often necessary
to find the most effective approach.

In conclusion, while logistic regression can be used for imbalanced classification problems, it's
essential to be aware of the potential biases and take appropriate measures to address them. By
employing techniques like oversampling, undersampling, class weighting, or ensemble methods,
you can improve the performance of logistic regression on imbalanced datasets.

Bias Variance

Q1. How can you identify a High Bias Model? How can you fix it?
Answer : Bias and variance contribute to a model's predictive power and can be balanced
through various methods.

1. High training error
2. Validation error or test error is the same as training error

To fix a High Bias model, you can:

1. Add more input features
2. Add more complexity by introducing polynomial features
3. Decrease the regularization term

Q2. How do bias and variance contribute to the overall errorin a

predictive model?
Answer : Bias and variance contribute to a model's predictive power and can be balanced
through various methods.

Architectural Impacts: Bias & Variance

e Bias: Represents the model's inability to capture complex relationships in the data,
leading to underfitting.

e Variance: Reflects the model's sensitivity to small fluctuations or noise in the training
data, often causing overfitting.

The Bias-Variance Tradeoff

The bias-variance decomposition framework aids in understanding prediction errors and
managing model complexity.

The expected error of a learning model can be represented as the sum of three distinct
components:

Expected Error

E(y — f(x))* = Var(f(z) + Bias*(f(x)) + Var(e)
Where:
e yisthetrue output.
e f(x) denotes the model's prediction for input x.
e crepresents the error term, assumed to be independent of x.
The three components contributing to error are:
i. Noise variance: The irreducible error present in all models.
ii. Bias"2: The degree to which the model doesn't capture true relationships in the
data.
iii. Variance: The extent to which the model's predictions vary across different
training datasets.

Code

import numpy as np

True output
y_true = np.array([1, 2, 3, 4, 5])

Mean of the true output
y_mean = np.mean(y_true)

Predictions from a model
y _pred = np.array([1, 3, 3, 5, 5])

Calculate total variance
total variance = np.var(y_true)

Calculate variance in predictions
pred_variance = np.var(y_pred)

Calculate bias squared
bias_squared = np.mean((y_pred - y _mean) ** 2)

Calculate noise variance
noise_variance = total_variance - pred_variance - bias_squared

https://www.codecogs.com/eqnedit.php?latex=E(y-f(x))%5E2%3DVar(f(x)%2BBias%5E2(f(x))%2BVar(%5Cepsilon)#0

Output the variances and squared bias along with noise
print("Variance contribution from the predictions: ", pred_variance)
print("Squared bias contribution from the predictions: ",
bias_squared)

print("Noise variance contribution:

, hoise variance)

Q3. Can Machine models overcome underfitting on biased data and

overfitting on data with variance? Does this guarantee correct results?
Answer : Yes, they can. Underfitting can be overcome by utilizing ML models with a greater
emphasis on the features - increasing the number of features or placing greater weight on the
features at play (using higher degree polynomials, for example.)

As for overfitting, the reverse can be done to eradicate it.

This does guarantee plausible results in real life since they still may be based on data that has
not been collected with the proper technique.

Q4. Show Bias Variance Trade-Off in Linear Regression
Answer :

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model selection import learning_curve
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

Set up data

np.random.seed(9)

X = np.linspace(@, 10, 100)

y = 2*¥X + np.random.normal(@, 1, 100)

Instantiate models of varying complexity

models = {
'Underfit': LinearRegression(), # Normal Linear Regression
'Optimal': LinearRegression(fit_intercept=False), # If there is no bias
'Overfit': LinearRegression(copy X=True) # Bias

Train models and calculate error metrics
train_sizes, train_scores, test_scores = learning curve(models[-1],
X.reshape(-1, 1), y, cv=5)

train_errors, test _errors =[], []
for key, model in models.items():
model.fit(X.reshape(-1, 1), y)
train_pred, test pred = model.predict(X.reshape(-1, 1)),
model.predict(X.reshape(-1, 1))
train_errors.append(mean_squared_error(y, train_pred))
test_errors.append(mean_squared_error(y, test pred))

Visualize the data

fig, ax = plt.subplots(1, 1, figsize=(5,3))

ax.plot(train_sizes, train_scores, 'o-', color='r', label='Training Set"')
ax.plot(train_sizes, test_scores, 'o-', color='g', label='Testing Set')
ax.set_xlabel('Model Complexity')

ax.set_ylabel('Performance")

ax.set_title('Learning Curve')

ax.legend()

plt.show()

Print error metrics
print("Training Errors:\n", train_errors, '\n')
print("Testing Errors:\n", test_errors)

Q5. Why is it impossible to simultaneously minimize both bias and

variance?

Answer : Attempting to minimize both bias and variance is an example of the Bias-Variance
Dilemma, which stems from the inherent trade-off between these two sources of error.
Bias-Variance Dilemma

The Bias-Variance Dilemma asserts that improving a model's fit to the training data often

compromises its generalization to unseen data, because reducing one type of error (E.g., bias)
typically leads to an increase in the other (E.g., variance).

Visual Representation

A

Total Error

Variance

Optimum Model Complexity

Error

6 >
Model Complexity

Mathematical Representation

The mean squared error (MSE) is the sum of bias, variance, and irreducible error:
MSE=E[(6’ - 8)"2]=bias2+variance+irreducible error

Where 0’ is the estimated parameter, 0 is the true parameter, and E denotes the expected
value.

Mathematical Detail

Bias: Represents the errors introduced by approximating a real-life problem, such as
oversimplified assumptions. It quantifies the difference between the model's expected
prediction and the true value. Minimizing bias involves creating a more complex model or
using more relevant features, which could lead to overfitting.

Bias=E[0’]-0

Variance: Captures the model's sensitivity to small fluctuations in the training data. A high
variance model is highly sensitive, leading to overfitting. Reducing variance usually involves
simplifying the model, which can lead to higher bias.

Variance=E[(0’-E[0'])"2]

Irreducible Error: This error term arises from noise in the data that is beyond the control of the
model. It represents a lower limit on the obtainable error rate and cannot be reduced.
Irreducible Error=0"2

Unified Approach

In statistical learning and state-of-the-art Machine Learning, models aim to strike a balance
between bias and variance by overall error minimization. Techniques like cross-validation,
regularization, and ensemble methods help manage this bias-variance trade-off, yielding
models that can generalize to new data effectively.

Q6. How would you diagnose bias and variance issues using learning

curves?
Answer : One of the most effective ways to diagnose both bias and variance issuesin a
machine learning model is through the use of Learning Curves.
Learning Curves are graphs that show how a model's performance on both the training data
and the testing data changes as the size of the training set increases.
Key Indicators from Learning Curves
e Training Set Error: The performance of the model on the training set.
e Validation Set (or Test Set) Error: The performance on a separate dataset, usually not
seen by the model during training.
Gap between Training and Validation Errors: This gap is a key indicator of variance.
Overall Level of Error: The absolute error on both the training and validation sets
indicates the bias.
Visual Cues for Bias and Variance
High Variance
Visual Clues: Large gap between training and validation error; both errors remain high.
Cause: The model is overly complex and tries to fit the noise in the training data, leading to
poor generalization.
High Bias
Visual Clues: Small gap between training and validation errors, but they are both high.
Cause: The model is too simple and is unable to capture the underlying patterns in the data.
Balancing Bias and Variance
e Visual Clues: Errors converge to a low value, and there's a small, consistent gap
between the two curves.
e Desirable Scenario: The model manages to capture the main patterns in the data
without overfitting to noise.
e Cross-Verification
It's crucial to validate your conclusions about bias and variance stemming from
learning curves using other metrics, such as area under the receiver operating

characteristic curve (AUC-ROC), precision-recall curves, or by employing k-fold
cross-validation.

Clustering

Q1. Can you explain the difference between supervised and
unsupervised learning with examples of where K-Means Clustering fits
in?

Answer : K-Means Clustering falls under unsupervised learning, in contrast to supervised
learning methods like Decision Trees and Random Forest.

Unsupervised Learning: Discovering Patterns

In unsupervised learning, the algorithm doesn't rely on labeled data and operates by
identifying commonalities or patterns in the dataset. This method is more about exploration
and understanding.

K-Means Clustering: Grouping Data

K-Means is a partition-based method, clustering data by minimizing the Euclidean distance
between each point and the centroid of its associated cluster.

Example: A real-world application is in customer segmentation, where similar customers are
grouped together based on their shopping behavior.

Supervised Learning: Assigning Labels

Supervised learning is all about teaching a model how to map input to output based on
example data. The model then uses that knowledge to predict the correct output when
presented with new input.

Decision Trees: Classification and Regression

A Decision Tree sequentially segments the data in a tree-like structure. At each node, the tree
makes a decision that best separates the data based on certain features.

Example: Decision Trees can be used in medicine to diagnose patients based on symptomes.
Random Forest: Ensemble Learning

Random Forest is an ensemble of Decision Trees. It constructs several trees through
bootstrapping, each considering a subset of features, and combines their predictions through
voting (for classification) or averaging (for regression).

Example: A practical application is in predicting customer churn for businesses.

Q2. What are centroids in the context of K-Means?

Answer :In k-Means clustering, centroids represent data points that act as the center of
clusters. Each cluster is defined by its corresponding centroid, and the goal of the
algorithm is to minimize intra-cluster distances by optimizing these centroids.

Role of Centroids

e Cluster Assignment: Each data point is associated with the closest centroid,
effectively linking it to a specific cluster.

e |Initial Centroid Selection: Starting with an initial guess, the algorithm iteratively
updates these points. Convergence occurs when the centroids no longer shift
substantially.

e Model Representation: The optimized centroids, alongside the assigned data
points, define the k-Means model. This model can make inferences about
future, unseen data by assigning them to the nearest centroids.

Centroid Calculation

Mathematically, the centroid of a cluster Ck having nk data points in a d-dimensional space is
given by the mean of the data points in that cluster:

1
C. = — E X
-
IL‘JcEf'f.-

The algorithm aims to find centroids that minimize the within-cluster sum of squares (WCSS),

which is also known as inertia. This is measured by:
K

WCSS =" fx— e’

k=1 x=0),
The smaller this value, the better the clustering.

Q3. What are some methods for initializing the centroids in K-Means

Clustering?

Answer : K-Means Clustering efficiency rests on strong initial centroid selection. Incorrect
initial seeding might lead to suboptimal cluster separation or slow convergence. Here are the
common centroid initialization methods.

K-Means++
K-Means++ enhances the random approach by probabilistically selecting the initial centroids.
This initiative lessens the likelihood of starting with close or outlier centroids.
1. Algorithm:
o Choose the first centroid randomly from the dataset.
o For every next centroid, pick a sample with a likelihood of being selected
proportional to its squared distance from the closest centroid.
o Keep repeating this procedure until all centroids are chosen.
2. Advantages:
o Suited for large datasets.
o Still relatively efficient even when k (the number of clusters) is not small.
3. Code Example: Here is the Python code:
from sklearn.cluster import KMeans

4. kmeans = KMeans(n_clusters=4, init='k-means++')

K-Means

K-Means is the classic approach where the initial centroids are randomly picked from the
dataset.
1. Random Sampling:
o Select k observations randomly from the dataset as initial centroids.
2. Advantages:
© Quick and easy to implement.
o Suitable for small datasets.
3. Code Example: Here is the Python code:
from sklearn.cluster import KMeans

4. kmeans = KMeans(n_clusters=4, init="random’)

Q4. How does the choice of ‘k’ impact the K-means algorithm?
Answer : The choice of ‘k’ influences the number of clusters identified by the algorithm.
Selecting an optimal ‘K’ is crucial; too few or too many clusters can result in misleading or
overly detailed groupings.

Q5. What is the silhouette score, and how is it used in evaluating

clustering results?

Answer: The silhouette score measures how well-defined the clusters are in a clustering result.
It ranges from -1 to 1, where a higher value indicates better-defined clusters.

Q6. What is the difference between K-means and hierarchical

clustering?

Answer: K-means is a partitioning algorithm that assigns each data point to a single cluster,
while hierarchical clustering creates a tree-like structure where data points can belong to
multiple clusters at different levels.

Q7. What is the elbow method, and how is it used in determining the

optimal number of clusters?

Answer: The elbow method involves plotting the cost (or inertia) of K-means clustering for
different values of ‘k’ and identifying the point where the rate of decrease sharply changes,
resembling an elbow. This point is considered the optimal number of clusters.

Q8. How does the Affinity Propagation algorithm work?

Answer: Affinity Propagation uses a message-passing approach to let data points vote on the
most suitable exemplar, which represents the cluster. It iteratively refines these votes to
converge on the final clusters.

Q9. Explain the concept of silhouette width and how it is calculated.
Answer: Silhouette width measures how similar an object is to its own cluster compared to
other clusters.

It ranges from -1 to 1, with higher values indicating better-defined clusters.

It is calculated as (b — a) / max(a, b), where ‘@’ is the average distance within the cluster, and
‘b’ is the average distance to the nearest cluster.

Q10. How does the Gaussian Mixture Model (GMM) differ from

K-means?

Answer: While K-means assumes that clusters are spherical and assigns data points to the
nearest cluster, GMM models clusters as ellipses and assigns probabilities to data points
belonging to different clusters.

Q11. How does the DBSCAN algorithm handle clusters of different

shapes and sizes?
Answer: DBSCAN is capable of identifying clusters of different shapes and sizes since it defines

clusters based on local density. It can handle irregularly shaped clusters and is less sensitive
to outliers.

Q12. Explain the concept of medoid in clustering.

Answer: A medoid is a representative point within a cluster, minimizing the average
dissimilarity to all other points in the cluster. Unlike a centroid, a medoid is an actual data
point.

Q13. How do you handle categorical variables in clustering

algorithms?

Answer: Handling categorical variables involves converting them into a numerical format,
often through techniques like one-hot encoding. Some clustering algorithms, like
K-prototypes, are designed to handle mixed numerical and categorical data.

Q14. What is the difference between k-means and hierarchical
clustering?

Answer: K-means clustering partitions the dataset into a predefined number of clusters (k) by
minimizing the within-cluster variance, while hierarchical clustering builds a hierarchy of
clusters by recursively merging or splitting clusters based on similarity or dissimilarity
measures.

Q15. How do you determine the optimal number of clustersin a
clustering algorithm?

Answer: The optimal number of clusters can be determined using techniques like the elbow
method, silhouette analysis, or the gap statistic. These methods aim to find the point where
adding more clusters does not significantly improve the clustering quality or where the
silhouette score is maximized.

Q16. What are some applications of unsupervised learning in
real-world scenarios?

Answer: Some applications of unsupervised learning include customer segmentation for
targeted marketing, anomaly detection in cybersecurity, topic modeling for text analysis,
image clustering for visual content organization, and recommendation systems for
personalized content delivery.

Q17. What is the purpose of feature scaling in machine learning?

Answer: Feature scaling ensures that all features contribute equally to the model training
process by scaling them to a similar range. Common scaling techniques include min-max
scaling and standardization (Z-score normalization).

Q18. How do you handle skewed distributions in features?

Answer: Skewed distributions can be transformed using techniques like logarithmic
transformation, square root transformation, or Box-Cox transformation to make the
distribution more symmetrical and improve model performance, especially for algorithms
that assume normality.

Q19. What is the difference between bagging and boosting?

Answer: Bagging (Bootstrap Aggregating) and boosting are ensemble learning techniques
used to improve model performance by combining multiple base learners. Bagging trains
each base learner independently on different subsets of the training data, while boosting
focuses on training base learners sequentially, giving more weight to misclassified instances.

Q20. Explain the working principle of support vector machines (SVM).

Answer: Support Vector Machines (SVM) is a supervised learning algorithm used for
classification and regression tasks. It works by finding the hyperplane that best separates the
data points into different classes while maximizing the margin, which is the distance between
the hyperplane and the nearest data points from each class.

Q21. Explain Kernel SVM.

Answer: Kernel SVM stands for Kernel Support Vector Machine. In SVM, a kernel is a function
that aids in problem-solving. They provide shortcuts to help you avoid doing complicated
math. The amazing thing about kernel is that it allows us to go to higher dimensions and
execute smooth computations. Kernel SVMs can work with a variety of kernel functions,
including linear, polynomial, and radial basis function (RBF) kernels, among others.

AUC - ROC

Q1. What is a confusion matrix?

Answer: A confusion matrix is another model evaluation technique which we use for

classification problems. In this technique we make a NxN matrix, where N is the number of
distinct classes to be predicted, so for a binary classification problem N=2. We have actual
values on the X-axis and Predicted values on the Y-axis. Model evaluation is done based on

some metrics that can be generated from this, like specificity, sensitivity, precision and recall.
Actual Values

Positive (1) Negative (0)

Positive (1) TP FP

Predicted Values

Negative (0) FN TN

Q2. How do we define sensitivity, specificity and precision?

Answer: Sensitivity, recall, power or true positive rate is the ratio of True positives to total
number of positives. For a given classification problem, it tells us the proportion of positives
that are correctly classified from all the positives.

TF

Sensitivity = TP FN

Specificity or true negative rate is the ratio of true negatives to total negatives. It tells us the
proportion of correctly classified negatives from all negatives.

TN

Speci ficity = TN FP

Precision is the proportion of True Positives to all cases Predicted as Positives

e
TP + FP

Precision =

Q3. Explain Naive Bayes’ algorithm

Answer: Naive Bayes’ is a classification algorithm that uses Bayes’ theorem to categorize
instance to a specific class. It assumes independence between the predictors which is a
major assumption given that it’s almost impossible that a set of predictors are completely
independent. It works well when the predictors are categorical.

P(Predictor|Class) * P(Class)

P(Class|Predictor) = P(Predictor)
redictor

Likelihood + Class Prior Probability
Predictor Prior Probability

Posterior Probability =

This should be a good place to stop. In this part Il we will be covering some of the most
commonly asked interview question on different ML algorithms.

Q4. What are the two components of Bayesian logic?

Answer: Two components of Bayesian logic are as follows:

Prior distribution: This is the information or beliefs that you have about the world before
observing any new data. Prior knowledge is typically represented as a probability distribution
over possible states of the world.

Likelihood principle: This is a function that describes the probability of observing some data
given a particular state of the world. The likelihood function is typically derived from scientific
theories, empirical observations, or expert opinions.

Q5. What is an F-score?

Answer: F score is a measure to test accuracy of a binary classification. It is the harmonic
mean of precision and recall. The F-score takes on a value between 0 and 1 and higher the
F-score, better the power of the classification model.

Precision * Recall

Precision + Recall

F — score = 2 %

Q6. When do we use ROC and AUC? What do they stand for? Why
would we use an ROC curve?

Answer: The ROC curve plots the True Positive Rate (Sensitivity) vs. False Positive Rate
(1-Specificity). ROC curves are used for parameter tuning. Let’s say we have a logistic
regression model and we don’t know what threshold to use for classifying True Positives and
True Negatives, then in this case generating a confusion matrix for each threshold can be a
cumbersome process to decide which threshold to use. So we make the ROC curve to decide
which threshold to use based on the true positive and false positive rate that works best for
us. We use AUC to decide which model is better. The model that has the maximum Area Under
Curve is the best model.

Q7. What is the difference between odds and probability? How are
each defined? How are log(odds) related to logistic regression?

Answer: Odds are the ratio of something happening to that something not happening,
whereas probability is the ratio of something happening to the total number of possibilities.

0+ G 1w
P{X)

e

The probability in logistic regression is modeled as 14 B0l

Now if we transform this equation to make it linear in X, we get something like

Jﬂﬂ(ﬂ] =30+ Bl *x

1 - P':X] where the left side represents the log(odds).

PCA

Q1. Is PCA used in feature selection?

Answer:

No, PCA is not typically used for feature selection. Instead, it is used in feature engineering to
create new features. PCA transforms the original features into a new set of uncorrelated
components, capturing the most variance in the data. These components are linear
combinations of the original features, so it doesn't directly "select" existing features but
rather forms new ones based on the data's variance.

Q2. Given the following small dataset:

X1 X2
25 24
0.5 0.7
22 29
19 22
3.1 3.0

How would you apply PCA to this dataset? Explain the steps and
provide the code.

Answer:

Steps to Apply PCA:

Standardize the Data: PCA requires the data to be standardized, so the mean of each feature is
0 and the variance is 1.

Fit PCA: Compute the covariance matrix and extract eigenvalues and eigenvectors to identify
the principal components.

Transform the Data: Project the original data onto the new principal components.
Transformed Data (Principal Components):
[-0.48592434,2.25837321,-0.25339487,-0.83020891,-0.6888449]

CODE:

data = np.array([[2.5, 2.4], [0.5, ©.7], [2.2, 2.9], [1.9, 2.2], [3.1,
3.0]11)

Standardize the data

stand data = (data - np.mean(data,axis=0))/np.std(data,axis=0)

Covariance Matrix

n stand_data.shape[0]

m = stand_data.shape[1]

cov_matrix = np.zeros((m,m))

for i in range(m):
for j in range(m):
cov_matrix[i,]j] =
(1/(n-1))*(np.sum(stand_data[:,i]*stand_data[:,j]))

Eigenvalues and Eigenvectors
eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

Sort the Eigenvalues and Eigenvectors
sorted_indices = np.argsort(eigenvalues)[::-1]
eigenvectors_sorted = eigenvectors[:, sorted_indices]

User input for number of principal components selection
k=1

Select top k eigenvectors i.e., Principal Components
principal_components = eigenvectors_sorted[:, :k]

Projecting the data onto selected principal components
transformed_data = stand_data.dot(principal_components)

Errors and Cross-Validation

Q1. Why in classification tasks squared error is not a suitable loss
function?

Answer:

1. Non-probabilistic outputs: In classification, the goal is to predict discrete class labels, often
based on the probability of each class. Squared error assumes continuous outputs, which
makes it more suited for regression tasks where predictions are numerical. It fails to capture
the probabilistic nature of classification.

2. Insensitive to misclassification: Squared error treats all differences between predicted and
actual values equally. In classification, the concern is whether the predicted class is correct or
not, rather than the magnitude of the error.

Q2. Why does the loss function (example: - sum of squared errors,
mean squared error) in linear regression models typically square the

error of the outputs?

Answer:

1. To make the error positive so that the negative error doesn't cancel out the positive error in
the expression.

2. Squaring the errors also makes sure that large errors are more penalized than the smaller
errors which helps the model focus on minimizing large errors in its predictions.

Q3. Does increasing the model complexity always result in a reduction

in error for the training set?

Answer: Yes, increasing the model complexity always results in a reduction in error for the
training set but the model that has high complexity may not be ideal for the task as even
though they have low bias, they have high variance if the model is not trained on a large set so
it may not perform better on the validation set.

Q4. Suppose your dataset has significant class imbalance (for
classification problems), what are the challenges that can arise during
cross-validation, and how would you address them without modifying

the dataset?

Answer: Problems arising due to an imbalanced dataset:
1. Algorithms may get biased towards the majority class and thus tend to predict
output as the majority class.
2. Minority class observations may look like noise to the model and be ignored by it.
3. An imbalanced dataset gives misleading accuracy scores.

Ways to address them:
1. Using different evaluation metrics as classifier accuracy is suitable for balanced
classes but less effective for imbalanced classes. F1 scores is the preferred metric for
the imbalanced datasets as it decreases when the classifier predicts the minority class
incorrectly.
2. Resampling:
Randomly removing rows from the majority class to align with the minority class.

Q5. How do you combine cross-validation with hyperparameter tuning

and what risks will you face while performing this process?

Answer: Decision trees are semi-parametric models that bridge the gap between them.

They exhibit a parametric nature as once they are constructed; they have a finite and fixed no
of parameters, but the form of the decision tree is heavily influenced by the training data as
the structure—the depth of the tree, the number of splits, and the variables chosen at each
split—depends entirely on the input data that is it is data-driven.

Q6. Are decision trees parametric or non-parametric models?

Answer: Cross-validation can be used for both hyperparameter tuning and estimating the
generalization performance of the model.

This method involves two levels of cross-validation:

An inner CV for parameter search and an outer CV for the best model selection.

The outer CV loop defines the dataset splits that the inner CV loop uses to find the best set of
hyperparameters by performing.

Risks Faced: -

Using the same cross-validation for both purposes simultaneously can lead to increased bias
especially when the dataset is small.

Decision Trees, KNN, SVM, Random
Forest

Q1. Are decision trees parametric or non-parametric models?

Answer: Decision trees are semi-parametric models that bridge the gap between them.

They exhibit a parametric nature as once they are constructed; they have a finite and fixed no
of parameters, but the form of the decision tree is heavily influenced by the training data as
the structure—the depth of the tree, the number of splits, and the variables chosen at each
split—depends entirely on the input data that is it is data-driven.

Q2. Why do we even apply methods of decision trees, linear
regression, etc. when we can just apply neural network solutions to all
the problems?

Answer: The main reasons we apply these methods are: -

1. They are fast to implement and have few or no hyper-parameters to tune.

2. They often work as well or better than more complicated methods.

3. Both can be easier to explain to a human user: decision trees are directly
human-interpretable and nearest neighbor methods can justify their decision to some extent
by showing a few training examples that the prediction was based on.

Q3. Why can't gradient descent be applied to minimize the error

function in regression trees?

Answer: Gradient descent cannot be applied directly to minimize the error function of
regression trees because decision trees are built using discrete, non-differentiable operations
(such as selecting features and splitting thresholds).

Q4. Suppose we train an SVM multiple times, with different random
initializations at the start, still, why do we get the same weights once
the training is complete every time?

Answer: SVMs optimize a convex objective function, specifically maximizing the margin
between classes while minimizing classification errors. The convex nature of this function
ensures that it has one unique solution.

Q5. What is the main advantage of using a decision tree in comparison

to more powerful alternatives like neural networks?

Answer: The main advantage of decision trees over neural networks is its simplicity and
interpretability as each decision node corresponds to a feature and a decision threshold,
making it straightforward to visualize and explain to non-experts. Neural networks, in
contrast, function as complex "black boxes" with numerous layers and parameters, making
them difficult to interpret.

Q6. In KNN why don’t we take k value as an even number?

Answer: In KNN, the class label of a new data point is determined by a majority vote of its k
nearest neighbours. If k is an even number and there are two or more classes, the algorithm
may end up with an equal number of neighbours from two different classes, resulting in a tie
which further complicates the process, so it is highly discouraged to use k value as an even
number.

Q7. Why is the role of distance metric important in K nearest neighbor?
Answer: The role of the distance metric is crucial in K-Nearest Neighbors (KNN) because it
determines how the algorithm calculates the "closeness" of data points and, ultimately,
which neighbours influence the classification or prediction.

Choosing the appropriate metric that fits the structure of your data can significantly impact
the accuracy of the model.

Q8. Why is the role of distance metric important in K nearest neighbor?
Answer: The role of the distance metric is crucial in K-Nearest Neighbors (KNN) because it
determines how the algorithm calculates the "closeness" of data points and, ultimately,
which neighbours influence the classification or prediction.

Choosing the appropriate metric that fits the structure of your data can significantly impact
the accuracy of the model.

Q9. The nearest neighbour prediction function can be described by
dividing the space up into regions whose closest point is each training
point.

Describe the following diagram by dividing it into regions:

Answer:

° e 1 o~
\ f1
- 20 1 1 2 .
1
o o ¢

Q9. What's the difference between Random Forest and simply bagging
a decision tree?

Answer: Bagging trains multiple decision trees using different bootstrap samples, but each tree uses
all features for splits, while Random Forest also trains multiple trees on bootstrap samples, but it
randomly selects a subset of features at each split, increasing tree diversity and reducing overfitting.
This additional randomness in feature selection makes random forests generally more powerful and
robust than the simple bagging of decision trees.

Q10. A distance metric for a k nearest Neighbour is defined as the
following:

i)d (A, B)=|A-Blif A>B

i) d (A, B) = 2x| A-Bl otherwise

s this a valid metric?

Answer: No, itis not a valid metric as it violates as it is not symmetric that is the distance metric gives
different values depending on the order of the points, violating the symmetry property.

Q11. What is the meaning of support vectors in SVM?

Answer: Support vectors are the data points that lie closest to the decision boundary (or hyperplane)
and play a crucial role in defining that boundary. These points are critical because they determine the
position and orientation of the decision hyperplane that separates the different classes.

Q12. Suppose we add new data entries to a dataset away from the
hyperplane. Will there be a change in the position of the hyperplane
due to the new entries?

Answer: Gradient descent cannot be applied directly to minimize the error function of regression trees
because decision trees are built using discrete, non-differentiable operations (such as selecting
features and splitting thresholds).

Q13. Suppose we add new data entries to a dataset away from the
hyperplane. Will there be a change in the position of the hyperplane
due to the new entries?

Answer: No, if the new data entries are far away from the hyperplane, they will not affect the position
of the hyperplane in Support Vector Machines (SVM) as the hyperplane position is entirely dependent
on support vectors which are data points that lie closest to the hyperplane.

Q14. How can | adjust a model with high bias and low variance to
achieve low bias and high variance?

Answer:

1. Use a more complex model:

Switch to a more expressive model: If you're using a simple model like linear regression
(which has high bias), switching to a more complex model like decision trees, random forests,
or deep learning can reduce bias but increase variance.

2. Reduce regularization:

Decrease regularization strength: If your model is highly regularized (like Ridge or Lasso
regression), reduce the regularization parameter (A). Regularization is typically used to control
variance but decreasing it can reduce bias while increasing variance.

3. Increase the number of features:

Include more features or interaction terms: By adding more features or interaction terms, you
allow the model to learn more complex relationships, which can reduce bias but may lead to
overfitting (higher variance).

4. Decrease model constraints:

If you are using models with specific constraints (e.g., restricting the maximum depth of a
decision tree), relaxing these constraints will reduce bias and increase variance.
5. Increase model capacity:

Add more layers/nodes to neural networks: If using a neural network, increasing the number
of hidden layers or neurons will increase the model’s capacity to learn complex patterns,
reducing bias at the cost of higher variance.

Q15. What are the different types of gradient descent, how do they
differ, and when should each be applied?

Answer:

1. Batch Gradient Descent (BGD):

In batch gradient descent, the gradient is computed over the entire training dataset for every
update of the model's parameters. This provides a stable and accurate estimate of the
gradient.

When to apply: Use batch gradient descent when the dataset is small or when computational
resources allow for processing large datasets in a reasonable time frame.

2. Stochastic Gradient Descent (SGD):

In stochastic gradient descent, the gradient is computed, and the model is updated after
evaluating each individual training example. This introduces noise to the gradient estimation
but allows much faster updates.

When to apply: Use SGD when you have a large dataset and need fast, frequent updates. It’s
also useful when memory is limited, as it processes one example at a time.

Q16. Why is bootstrapping used in Random Forest, and what would
happen if it’s not used?

Answer:

1. Why Bootstrapping is Used:

i. Increases Diversity Among Trees: By training each tree on a slightly different subset of the
data, Random Forest introduces variability in the decision trees. This helps avoid overfitting
and increases the overall generalization ability of the ensemble.

ii. Reduces Variance: A single decision tree is prone to high variance and may overfit the data.
By averaging the predictions of multiple trees trained on different datasets, bootstrapping
helps reduce the variance of the final model.

iii. Improves Robustness: Since each tree sees a different portion of the data, the final model
is more robust to anomalies or outliers, as individual trees might handle them differently.

2. What Happens if Bootstrapping is Not Used:

l. Increased Correlation Between Trees: Without bootstrapping, all trees in the forest would be
trained on the same dataset. This makes the trees more similar to each other, leading to
highly correlated predictions. This reduces the ensemble’s ability to lower variance and make
accurate predictions.

ii. Reduced Generalization: The lack of diverse training data for each tree would make the
Random Forest act more like a traditional decision tree ensemble, increasing the likelihood of
overfitting and reducing the generalization performance.

iii. Lower Model Performance: The strength of Random Forest lies in the fact that it combines
many "weak" learners into a strong one. Without bootstrapping, the trees would be less
diverse, and the final model would lose the ensemble benefit, likely leading to lower accuracy
on unseen data.

Q17. What are the differences between bagging, boosting, and
bootstrapping

Answer:

1. Bootstrapping:

Bootstrapping is a sampling technique where multiple subsets of data are created by
sampling with replacement from the original dataset. Each sample has the same size as the
original dataset, but because of replacement, some data points may appear multiple times,
while others may not appear at all.

2. Bagging:

Bagging is an ensemble technique that builds multiple models (typically decision trees) by
training them on different bootstrapped datasets (subsets of the data created through
bootstrapping). The final prediction is made by averaging the outputs of all models (for
regression) or taking a majority vote (for classification).

3. Boosting:

Boosting is another ensemble technique where models are built sequentially. Each new
model is trained to correct the mistakes made by the previous ones. Unlike bagging, boosting
does not use bootstrapped datasets. Instead, it adjusts the weights of training examples,
focusing on those that were misclassified or poorly predicted by previous models.

Q18. What happens to a Random Forest when we increase the depth
of the trees?

Answer:

1. Higher Complexity and Overfitting:

Deeper trees allow the model to learn more complex patterns in the training data. This can
lead to overfitting, where the trees capture noise and specific details that do not generalize
well to new, unseen data.

2. Lower Bias:

Deeper trees are less restricted and can better fit the training data. This reduces bias,
allowing the trees to make more accurate predictions on the training set.
3. Increased Training Time:

Deeper trees require more computations since they need to evaluate more splits and
branches. This increases the overall training time, especially if there are many features.

Q19. Implement from scratch,

1. Random Forest
2. KNN

Answer:
1.

import random
from collections import Counter
import numpy as np

class DecisionTree:
def init (self, max_depth=2):
self.max_depth = max_depth
self.tree = None

def fit(self, X, y):
self.tree = self. grow_tree(X, y, depth=0)

def _grow_tree(self, X, y, depth):

num_samples, num_features = X.shape

if depth >= self.max_depth or len(set(y)) == 1:
return Counter(y).most_common(1)[0][@]

feat_idx = random.randint(@, num_features - 1)
threshold = np.mean(X[:, feat_idx])

left _idxs = X[:, feat _idx] < threshold
right_idxs = X[:, feat_idx] >= threshold

left = self. grow_tree(X[left_idxs], y[left_idxs], depth + 1)

right = self. grow_tree(X[right_idxs], y[right_idxs], depth +
1)

return (feat_idx, threshold, left, right)

def predict(self, X):
return np.array([self. traverse_tree(x, self.tree) for x in X])

def traverse tree(self, x, node):
if not isinstance(node, tuple):

return node
feat_idx, threshold, left, right = node
if x[feat_idx] < threshold:

return self. traverse_tree(x, left)
else:

return self._ traverse_tree(x, right)

class RandomForest:
def init_ (self, n_trees=10, max_depth=2):
self.n_trees = n_trees
self.max_depth = max_depth
self.trees = []

def bootstrap sample(self, X, y):

n_samples = X.shape[0]

indices = np.random.choice(n_samples, size=n_samples,
replace=True)

return X[indices], y[indices]

def fit(self, X, y):

self.trees = []

for _ in range(self.n_trees):
tree = DecisionTree(max_depth=self.max_depth)
X_samp, y _samp = self.bootstrap_sample(X, y)
tree.fit(X_samp, y samp)
self.trees.append(tree)

def predict(self, X):
tree_preds = np.array([tree.predict(X) for tree in self.trees])

return np.array([Counter(tree_preds[:, i]).most_common(1)[0©][@] for i
in range(X.shape[@])])

2.

import numpy as np
from collections import Counter
def euclidean distance(x1, x2):

IIIH!III

return np.sqrt(np.sum((x1 - x2) ** 2))

class KNN:
def init (self, k=3):
self.k = k

def bootstrap sample(self, X, y):

n_samples = X.shape[9]

indices = np.random.choice(n_samples, size=n_samples, replace=True)
return X[indices], y[indices]

def fit(self, X, y):
self.X_train, self.y train = self.bootstrap_sample(X, y)

def predict(self, X):
predictions = [self. predict(x) for x in X]
return np.array(predictions)

def predict(self, x):

distances = [euclidean_distance(x, x_train) for x_train in self.X train]
k_indices = np.argsort(distances)[:self.k]

k_nearest_labels = [self.y train[i] for 1 in k_indices]

most_common = Counter(k_nearest_labels).most_common(1)

return most_common[0][0]

Basic Deep Learning

Q1. What are autoencoders? Explain the different layers of
autoencoders and mention three practical usages of them?

Answer :
1. Autoencoders are one of the deep learning types used for unsupervised learning.
There are key layers of autoencoders, which are the input layer, encoder, bottleneck
hidden layer, decoder, and output.

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

2. The three layers of the autoencoder are:-

3. Encoder - Compresses the input data to an encoded representation which is typically
much smaller than the input data.

4. Latent Space Representation/ Bottleneck/ Code - Compact summary of the input
containing the most important features

5. Decoder - Decompresses the knowledge representation and reconstructs the data
back from its encoded form. Then a loss function is used at the top to compare the
input and output images.
NOTE- It's a requirement that the dimensionality of the input and output be the same.
Everything in the middle can be played with.

Autoencoders have a wide variety of usage in the real world. The following are some of
the popular ones:
e Transformers and Big Bird (Autoencoders is one of these components in both
algorithms): Text Summarizer, Text Generator
e |mage compression
e Nonlinear version of PCA

Q2. What is an activation function and discuss the use of an activation
function? Explain all different types of activation functions?

Answer :

In mathematical terms, the activation function serves as a gate between the current neuron
input and its output, going to the next level. Basically, it decides whether neurons should be
activated or not. It is used to introduce non-linearity into a model.

Activation functions are added to introduce non-linearity to the network, it doesn't matter
how many layers or how many neurons your net has, the output will be linear combinations of
the input in the absence of activation functions. In other words, activation functions are what
make a linear regression model different from a neural network. We need non-linearity, to
capture more complex features and model more complex variations that simple linear models
can not capture.

There are a lot of activation functions:
e Sigmoid function: f(x) = 1/(1+exp(-x)): The output value of it is between 0 and 1, we can

use it for classification. It has some problems like the gradient vanishing on the
extremes, also it is computationally expensive since it uses exp.

e Tanh: f(x) = (exp(x) - exp(-x))/(exp(x)+exp(-x)): The output value of it is between -1 and
1, gives zero centered outputs with stronger gradients than sigmoid. It still has same
problem of vanishing gradient but on lesser points than sigmoid functions.

e RelU: f(x) = max(0,x): it returns 0 if the input is negative and the value of the input if the
input is positive. It solves the problem of vanishing gradient for the positive side,
however, the problem is still on the negative side. It is fast because we use a linear
functioniniit.

e |Leaky ReLU: F(x)=ax, x<0 F(x)= x, x>=0
It solves the problem of vanishing gradient on both sides by returning a value “a” on
the negative side and it does the same thing as ReLU for the positive side.

e Parametric ReLU: F(x) ={x if x>0, ax if x<0}
ain this ReLU is a learned parameter during training. It is better suited for complex
problems as it can adapt a values. But it is more computationally expensive because of
learning a.

e Exponential Linear Unit (ELU): f(x)={x if x>0, a(ex—1) if x<0}
Its value ranges from -a to infinity. It helps to mitigate vanishing gradient problems
and can have negative outputs, improving the learning rate.

e Softplus: f(x)=log(1+exp(x))
It gives positive values.
Itis similar to ReLU but differentiable everywhere.

e Softmax: f(xi) = exp(xi)/Zjexp(xi)
itis usually used at the last layer for a classification problem because it returns a set of
probabilities, where the sum of them is 1. Moreover, it is compatible with
cross-entropy loss, which is usually the loss function for classification problems.

e GELU (Gaussian Error Linear Unit): f(x)=x - ®(x) where ®(x) is the CDF of a standard
Gaussian distribution.

It is frequently used in modern models like Transformers (e.g., BERT).

e Hard Sigmoid: f(x)=max(0,min(1,0.2x+0.5))

The output value of it is between 0 and 1, it approximates sigmoid but is
computationally cheaper. It is efficient to compute, works well in resource-constrained
environments.

e Swish: f(x) =x-o(x)
It is new function used in deep learning models like those from Google (e.g.,
EfficientNet)
Itis smooth and non-monotonic, more computationally complex than ReLU.

Q3. What can be done if | want to have parallel trunks trained
simultaneously?results?

Answer :

This can be done using parameter sharing which is the method of sharing weights by all
neurons in a particular feature map. Therefore helps to reduce the number of parameters in
the whole system, making it computationally cheap. It basically means that the same
parameters will be used to represent different transformations in the system. This means the
same matrix elements may be updated multiple times during backpropagation from varied
gradients. The same set of elements will facilitate transformations at more than one layer
instead of those from a single layer as conventional. In that case, using shared weights in a
few layers(usually the bottom layers) helps the model converge better. This behavior, as
observed, can be attributed to more diverse feature representations learned by the system.
Since neurons corresponding to the same features are triggered in varied scenarios. Helps to
model to generalize better.

Q4. What if all activation functions are turned to linear?
Answer :

If all activation functions in a neural network are turned to linear functions, the network will
behave like a single linear model, regardless of the number of layers. This is because a
composition of linear functions is still a linear function, so the network will lose its ability to
model complex, non-linear relationships in the data.

Q5. If all the activation functions are positive, can output of output
layers be negative?

Answer :

No, if all activation functions in the network are strictly positive, the output of the output layer
cannot be negative. This is because the activations from previous layers will all be
non-negative, and if the output layer only combines these positive values, the result will also
be non-negative.

Q6. How to decide which activation function to use?

Answer: Choosing an activation function depends on several factors related to the
problem you are trying to solve:

Non-linearity: Most deep learning problems require non-linear activation functions to
model complex patterns. Functions like ReLU, sigmoid, and tanh introduce non-linearity.

Type of task:

e C(Classification: For binary classification, use sigmoid in the output layer. For
multi-class classification, use softmax in the output layer.

Regression: For regression tasks, use linear activation in the output layer.
Vanishing gradient problem: To avoid vanishing gradients in deep networks,
ReLU (Rectified Linear Unit) or its variants (Leaky ReLU, ELU) are commonly
used because they avoid saturation in the positive range.

e Computational efficiency: ReLU is often preferred because it's simple and
computationally efficient, as it does not require expensive operations like
exponentiation.

e Symmetry: Functions like tanh are symmetric around zero, which can help in
certain cases where negative values are important.

Q7. What is normalization in the context of deep learning, and what
are the different types of normalization techniques? When would you

use each of these techniques?

Answer: Normalization is a data preprocessing technique that rescales feature values to
a common range, typically between 0 and 1. This process helps improve the
performance and stability of machine learning algorithms by ensuring that each feature
contributes equally to the distance calculations and model training.

e Batch Normalization: Normalizes the input to a layer across the batch
dimension. It scales and shifts the normalized data to improve training stability
and speed. Used for large batch sizes and deep CNNs (image classification,
object detection).

e Layer Normalization: Normalizes across the features within a single training
example rather than across the batch.Used for recurrent neural networks (NLP
tasks, small batches).

e Instance Normalization: normalizes each individual training example separately
across the feature channels. It was initially used in style transfer tasks,used for
tasks where texture and contrast are important (style transfer).

e Group Normalization: It divides channels into groups and normalizes within each
group. Unlike batch normalization, it does not rely on large batch sizes.\When
batch size is small (object detection, segmentation).

e Weight Normalization: This technique normalizes the weights of the neurons,
decoupling the magnitude of the weights from their direction. It helps in
controlling the learning dynamics. When you want to control weight magnitude
(image generation).

e Spectral Normalization: Spectral normalization normalizes the weight matrices by
their spectral norm (largest singular value), effectively controlling the Lipschitz
constant of the neural network. Used when training GANs to stabilize and control
gradient magnitudes.

Q7. What would be the implications for the mapping from input to
output if the activation function in a neural network were linear
(a[z]=W0+z*P1) or removed entirely (resulting in a[z]=z)?

Answer :

When activation functions become linear:

no matter how many inputs are received, with a linear activation function, the model can
learn to make only linear combinations of the inputs. This basically makes the entire
function linear regardless of how many layers the network has, as linearity is preserved
by the property of a composition of linear functions being a linear function. The model
would thus only be able to discern linear relationships in the data, severely limiting its
ability to model complex patterns.

No Activation Function (Direct Mapping):

Similar to the case with a linear activation function, this setup means that the network
can only represent linear mappings from input to output. Without non-linearities, no
matter how deep the network is, it cannot learn complex functions or relationships,
leading to the same limitation as the linear activation function.

Whether the activation function is linear or removed, the resulting mapping from input to
output remains linear. This significantly limits the expressiveness of the model and its

ability to capture the underlying complexities in the data. Non-linear activation functions
are essential in neural networks to allow for the modeling of more complex, non-linear
relationships.

Q8. In a neural network with one input, three hidden units, and one
output, how do the Heaviside step function, hyperbolic tangent
function (tanh), and rectangular function (rect) affect the family of
functions that the network can represent? Additionally, how do the
parameters influence the output?

Answer : Heaviside Step Function:

e Outputs 1 forinputs =0 and 0 otherwise, leading to piecewise constant functions. The
parameters define thresholds, creating binary classifications but limiting the model to
step-like behavior.

Hyperbolic Tangent Function (tanh):

e Outputs values between -1 and 1, allowing for smooth transitions. This introduces
non-linearity, enabling the model to represent continuous relationships. Parameters
influence the slope and position, allowing for nuanced predictions.

Rectangular Function (rect):

e Outputs 1forinputsin [0, 1] and 0 otherwise, creating bounded piecewise constant
outputs. The parameters define the active range, allowing for some complexity but still
resulting in distinct regions.

Q9. Derive the number of regions created by the shallow network.

e For Di=2,D=3,Do =1, calculate the maximum number of regions created by the
partitioning of a 2-dimensional space with 3 hyperplanes.

Next, extend this to a case with 5 hidden units (D =5).

e How many regions can be created in the same 2-dimensional input space if we
increase the number of hidden units to 5?

J) Ly = do+@1hy +daha+d3hs

10 0.0 10
Input, g

Answer: To calculate the maximum number of regions created by a shallow network
with Di = 2 and D = 3 hidden units, we apply Zaslavsky's formula:

P(D;, D) = ED: (D)

=0 \J
Substituting the values:
Di=2
D=3
We have:

res = ()« () ()G

Calculating each term:

- (s 0 ()

Adding these together gives:

P(2,3)=1+3+3+1=8

https://www.codecogs.com/eqnedit.php?latex=P(D_i%2C%20D)%20%3D%20%5Csum_%7Bj%3D0%7D%5E%7BD%7D%20%5Cbinom%7BD%7D%7Bj%7D#0
https://www.codecogs.com/eqnedit.php?latex=P(2%2C%203)%20%3D%20%5Cbinom%7B3%7D%7B0%7D%20%2B%20%5Cbinom%7B3%7D%7B1%7D%20%2B%20%5Cbinom%7B3%7D%7B2%7D%20%5Cbinom%7B3%7D%7B3%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbinom%7B3%7D%7B0%7D%20%3D%201%2C%20%5Cquad%20%5Cbinom%7B3%7D%7B1%7D%20%3D%203%2C%20%5Cquad%20%5Cbinom%7B3%7D%7B2%7D%20%3D%203%2C%20%5Cquad%20%5Cbinom%7B3%7D%7B3%7D%20%3D%201#0

However, due to the way the functions overlap and partition the space, the maximum
distinct regions created in practice is seven, as shown in the figure.

For D = 5:

Now, if we increase the number of hidden units to D = 5, we calculate:

reo-5()

j=0
Calculating each term:

v ()-r ()-w (n ()-r ()

Adding these together gives:
P(2,5)=1+5+10+10+5+1=32

Thus, the maximum number of regions created by a shallow network with 2-dimensional
input and 5 hidden units is 32.

Q10. Consider a deep neural network with the following configuration:

e Number of inputs Di=5,

e Number of outputs Do=1,

e Number of hidden layers K=20,

e Each hidden layer contains D=30 hidden units.

Questions:

1. Define the depth of the network and calculate it based on the given
information.

2. Define the width of the network and compute it based on the number
of hidden units per layer.

Answer : Current number of weights:

1. Inputto first hidden layer: 1x10=10
2. Hidden to hidden layers: 9%(10x10)=900
3. Last hidden to output: 10x1=10

https://www.codecogs.com/eqnedit.php?latex=P(2%2C5)%20%3D%20%5Csum_%7Bj%3D0%7D%5E%7B5%7D%20%5Cbinom%7B5%7D%7Bj%7D#0
https://www.codecogs.com/eqnedit.php?latex=%20%5Cbinom%7B5%7D%7B0%7D%20%3D%201%2C%20%5Cquad%20%5Cbinom%7B5%7D%7B1%7D%20%3D%205%2C%20%5Cquad%20%5Cbinom%7B5%7D%7B2%7D%20%3D%2010%2C%20%5Cquad%20%5Cbinom%7B5%7D%7B3%7D%20%3D%2010%2C%20%5Cquad%20%5Cbinom%7B5%7D%7B4%7D%20%3D%205%2C%20%5Cquad%20%5Cbinom%7B5%7D%7B5%7D%20%3D%201%20#0

Total: 10+900+10=920

Increasing depth by one:

Adding a hidden layer adds 10x10=100 weights.

Increasing width by one:
Each layer has 11 units now:

Input to first hidden: 1x11=11 (adds 1 weight)

Hidden to hidden: 9%(11x11)=1089(adds 189 weights)
Last hidden to output: 11x1=11(adds 1 weight)

Total increase: 1+189+1=191 weights.

Conclusion:

e Increasing depth adds 100 weights.
e Increasing width adds 191 weights.

Thus, increasing width adds more weights.
Q11. Consider a deep neural network with the following configuration:

e Number of inputs Di=5,

e Number of outputs Do=4,

e Three hidden layers with sizes D1=20, D2=10, and D3=7,
respectively.

Questions:

1. Define the equations for each layer of the network, starting from
the input to the output.

2. Determine the dimensions of the weight matrices and bias
vectors for each layer.

Answer : First hidden layer:
h1=a[f1+Q1x]
Where:

e (O1lisof size 20x5 (connecting 5 inputs to 20 units in the first hidden layer).
e [1isof size 20x1 (bias for the 20 units).

Second hidden layer:
h2=a[32+Q2h1]
Where:

e 02 isof size 10x20 (connecting 20 units in the first hidden layer to 10 units in the
second).
e [32isof size 10x1 (bias for the 10 units).

Third hidden layer:
h3=a[33+Q3h2]
Where:

e (3isof size 7x10(connecting 10 units in the second hidden layer to 7 units in the
third).
e [33is of size 7x1(bias for the 7 units).

Output layer:
y=Bo+Qoh3
Where:

e Qois of size 4x7 (connecting 7 units in the third hidden layer to 4 output units).
e [oisof size 4x1 (bias for the 4 outputs).

This provides the complete set of equations and the sizes of the weight matrices and bias
vectors for each layer.

Q12. Consider a deep neural network with the following structure:

e Asingleinput,
e Asingle output,

e Khidden layers, each containing D hidden units.

Calculate the number of parameters (weights and biases) for each
layer and sum them up for the entire network.

Answer : The total number of parameters in a deep neural network with 1 input, 1 output, K
hidden layers, and D hidden units per layer is derived as follows:

1. Inputto first hidden layer: 2D parameters (weights + biases).

2. Hidden layers: Each of the K-1 hidden layers has D(D+1) parameters (weights + biases),
contributing (K-1)D(D+1).

3. Last hidden layer to output: D+1 parameters (weights + bias).

Total parameters:

Total=2D+(K-1)D(D+1)+(D+1)=3D+1+(K-1)D(D+1)

Q12. Consider two neural networks that map a scalar input x to a
scalar outputy:

1. First Network (Shallow)
o Number of hidden units D=95
2. Second Network (Deep)
o Number of layers K=10
o Each layer contains D=5 hidden units

Questions:

1. Determine the weights and biases for both networks.

2. Analyze the capacity for linear region generation for both the
shallow and deep networks.

3. Consider the computational aspects of shallow vs. deep
networks.

Answer : Using the formula from the above problem, the shallow network has 3x95+1 = 286
parameters, and the second network has3 x5+ 1+ (9 x 5 x 6) = 286 parameters. They are both
the same. The shallow network can create 96 regions; since there is just one input, each
hidden unit creates one joint, for a total of 95 joints separating 96 linear regions. The number
of linear regions for the deep network is given by equation 4.17 and is 60,466,176. In principle,
the shallow network will be faster to run on modern hardware as the computation is more
parallel.

Regularisation

QL. You are using a deep neural network for a prediction task. After
training your model, you notice that it is strongly overfitting the
training set and that the performance on the test isn’t good. What can
you do to reduce overfitting?

Answer : To reduce overfitting in a deep neural network changes can be made in three stages:
The input data to the network, the network architecture, and the training process.

The input data to the network:
Check if all the features are available and reliable.
Check if the training sample distribution is the same as the validation and test set
distribution. Because if there is a difference in validation set distribution then it is hard
for the model to predict as these complex patterns are unknown to the model.
Check for train / valid data contamination (or leakage)
The dataset size is enough, if not try data augmentation to increase the data size
Check if the dataset is balanced

Network architecture:
Overfitting could be due to model complexity. Question each component:
can fully connect layers be replaced with convolutional + pooling layers?
what is the justification for the number of layers and number of neurons chosen?
Given how hard it is to tune these, can a pre-trained model be used?
Add regularization - lasso (1), ridge (12), elastic net (both)
Add dropouts
Add batch normalization

The training process:
Improvements in validation losses should decide when to stop training. Use callbacks
for early stopping when there are no significant changes in the validation loss and
restore best weights.

Q2. Why should we use Batch Normalization?

Answer : Batch normalization is a technique for training very deep neural networks that
standardizes the inputs to a layer for each mini-batch.

Usually, a dataset is fed into the network in the form of batches where the distribution of the
data differs for every batch size. By doing this, there might be chances of vanishing gradient or
exploding gradient when it tries to backpropagate.

In order to combat these issues, we can use BN (with irreducible error) layer mostly on the
inputs to the layer before the activation function in the previous layer and after fully
connected layers.

Batch Normalisation has the following effects on the Neural Network:
Robust Training of the deeper layers of the network.

Better covariate-shift proof NN Architecture.

Has a slight regularisation effect.

Centred and Controlled values of Activation.

Tries to Prevent exploding/vanishing gradient.

Faster Training/Convergence to the minimum loss function

Q3. Why is Sigmoid or Tanh not preferred to be used as the activation
function in the hidden layer of the neural network?

Answer : Acommon problem with Tanh or Sigmoid functions is that they saturate. Once
saturated, the learning algorithms cannot adapt to the weights and enhance the performance
of the model. Thus, Sigmoid or Tanh activation functions prevent the neural network from
learning effectively leading to a vanishing gradient problem. The vanishing gradient problem
can be addressed with the use of Rectified Linear Activation Function (ReLu) instead of
sigmoid and Tanh.

Q4. How does L1/L2 regularization affect a neural network?

Answer : Overfitting occurs in more complex neural network models (many layers, many
neurons) and the complexity of the neural network can be reduced by using L1 and L2
regularization as well as dropout, Data augmentation and Dropout. L1 regularization forces
the weight parameters to become zero. L2 regularization forces the weight parameters
towards zero (but never exactly zero|| weight decay)
Smaller weight parameters make some neurons neglectable therefore neural network
becomes less complex and less overfitting.
Regularization has the following benefits:

e Reducing the variance of the model over unseen data.

e Makes it feasible to fit much more complicated models without overfitting.

e Reduces the magnitude of weights and biases.

e L1 learns sparse models thatis many weights turn out to be 0.

Q5. What is the effect of dropout on the training and prediction speed
of your deep learning model?

Answer: Dropout is a regularization technique, which zeroes down some weights and scales
up the rest of the weights by a factor of 1/(1-p). Let's say if Dropout layer is initialized with
p=0.5, that means half of the weights will zeroed down, and rest will be scaled by a factor of 2.
This layer is only enabled during training and is disabled during validation and testing. Hence
validation and testing is faster. The reason why it works only during training is, we want to
reduce the complexity of the model so that model doesn't overfit. Once the model is trained,
it doesn't make sense to keep that layer enabled.

Q6. What is the advantage of deep learning over traditional machine
learning?

Answer: Deep learning offers several advantages over traditional machine learning
approaches, including:
e Ability to process large amounts of data: Deep learning models can analyze and

process massive amounts of data quickly and accurately, making it ideal for tasks such
as image recognition or natural language processing.

e Automated feature extraction: In traditional machine learning, feature engineering is a
crucial step in the model building process. Deep learning models, on the other hand,
can automatically learn and extract features from the raw data, reducing the need for
human intervention.

e Better accuracy: Deep learning models have shown to achieve higher accuracy levels
in complex tasks such as speech recognition and image classification when compared
to traditional machine learning models.

e Adaptability to new data: Deep learning models can adapt and learn from new data,
making them suitable for use in dynamic and ever-changing environments.

e While deep learning does have its advantages, it also has some limitations, such as
requiring large amounts of data and computational resources, making it unsuitable for
some applications.

Q7. For a given small dataset what should be used deep learning or
machine learning? If you choose to use a neural network, what
strategies can be employed to enhance its performance?

Answer: When working with a small dataset, traditional machine learning methods are
often preferred because they require fewer data points to train effectively and are less
prone to overfitting compared to deep learning models.

However, if you want to use a neural network for such a dataset, you can employ
several strategies to improve its performance:

e Data Augmentation: This technique involves artificially increasing the size of your
dataset by applying transformations such as rotation, scaling, and flipping to the
existing data, which helps the model generalize better.

e Transfer Learning: You can leverage pre-trained models that have been trained
on larger datasets. Fine-tuning these models on your small dataset can lead to
better performance without requiring a large amount of data.

e Regularization Techniques: Implement techniques such as dropout or L2
regularization to prevent overfitting, which is a common issue when using neural
networks on small datasets.

e Simplifying the Model: Use a simpler architecture with fewer layers and neurons
to reduce the risk of overfitting.

e Padding: If your input data varies in size (like images), use padding to ensure
consistent input dimensions. Padding adds extra pixels (zeros or specific values)
around the borders of the input data, allowing the neural network to process
inputs of uniform size.

By using these strategies, you can effectively utilize a neural network even with a small
dataset.

Q8. Difference between SGD and Adam and which is better in which
situation?

Answer: SGD with momentum can find lower minima faster than Adam, which generalizes
better over a variety of deep learning tasks. However, this is strange since SGD is a special case
of Adam (when 3 =0, y = 1) once the modification term in becomes one, which happens

quickly.
= my41
m;,; < —0
+ 1— Bttt
-~ Vil

where 3 and y are the momentum coefficients for the two statistics and mt+1 is the gradient
and vt+1 is the pointwise squared gradient.

It is hence more likely that SGD outperforms Adam when we use Adam’s default
hyperparameters. AdamW substantially improves the performance of Adam in the presence of
L2 regularization. If we search for the best Adam hyperparameters, it performs just as well as
SGD and converges faster. There is a method called SWATS that starts using Adam (to make
rapid initial progress) and then switches to SGD (to get better final generalization
performance).

Q9.What causes exploding gradients? Is it caused by an optimiser or
regularizer?

Answer: Exploding gradients are primarily caused by deep networks and poor initialization of
weights, where large gradients get propagated back through the layers during training. This
can result from:

e \Verydeep architectures (e.g., RNNs and deep feedforward networks).
e Poor weightinitialization.
e High learning rates.

Optimizers: Optimizers themselves do not directly cause exploding gradients, but they can
exacerbate the problem. For example, if the learning rate is too high in optimizers like SGD, it
can make the weight updates too large, worsening the effect of exploding gradients.

Regularizers: Regularization techniques (e.g., L2 regularization) generally help mitigate
overfitting, but they are not the cause of exploding gradients. They can sometimes help by
limiting weight growth, which indirectly reduces the impact of exploding gradients.

Solutions of exploding gradient:

Gradient clipping: Limits the size of the gradients to prevent them from growing too large.
Proper weight initialization: Techniques like Xavier or He initialization can help mitigate the
problem.

Use of specialized optimizers: Adam and RMSProp handle adaptive learning rates, reducing
the risk of exploding gradients.

For a layer with nin input units and nout output units, the weights are initialized using the
following formula:

W~N(0,2/(nin+nout))

Q10. If you have a deep learning model that expects an input layer
with 100 neurons, but your dataset only has 51 features (neurons),
what strategies can you employ to address this discrepancy?

Answer:

Padding: We can pad the input features to meet the required number of neurons. This
involves adding additional neurons with a fixed value (often zeros) to increase the input
dimension from 51 to 100. While this is a straightforward solution, it’s essential to ensure that
the padded values do not negatively impact model performance.

PCA: we can consider dimensionality reduction techniques like PCA (Principal Component
Analysis) to transform the original feature space. Although PCA reduces dimensions, you can
expand it back to 100 dimensions by using methods like interpolation or adding synthetic
features to fill the gap.

Feature engineering techniques: used to create new features that might enrich the dataset.
This could involve creating interaction terms, polynomial features, or using domain
knowledge to extract meaningful information from existing features.

Q11. What are the limitations in deep learning?

Answer: As models reach state-of-the-art performance, further improvements can become
increasingly challenging. Achieving just a 0.01% increase in accuracy often requires
substantial effort, resources, and experimentation, making it less practical for many
applications.

Deep learning models can be sensitive to adversarial examples, where small, intentionally

crafted perturbations in input data can lead to significant misclassifications.

Deep learning systems can perpetuate biases present in training data, leading to unfair or
discriminatory outcomes. This raises ethical concerns about their deployment in real-world
applications.

Q12. Imagine you're building a model to predict how many pedestrians will pass
a specific point in the city over the next minute. You have data that includes
factors like the time of day, the location (longitude and latitude), and the type of
neighborhood. Since pedestrian counts can be modeled well using the Poisson
distribution, which has a single positive parameter A\lambdaA representing the
average rate of pedestrians, how would you go about designing a loss function
for your model? Assume you have Ill training pairs of data, {(xi,yi)}.

\ee—2
Pr(y=Fk) = ——
Design a loss function for this model assuming we have access to | training
pairs {xi, yi}.

Answer: To predict the number of pedestrians using the Poisson distribution, we can
minimize the negative log-likelihood. The Poisson probability mass function is:
Aee=A
k!
The log-likelihood for a single training example (xi,yi) is:
log P(y; | Ai) = yilog(Ai) — \i

The negative log-likelihood loss function over all training examples is:
I

L(A) =— Z (yilog(Ai) — Ni)

i=1

Ply=k|) =

https://www.codecogs.com/eqnedit.php?latex=P(y%20%3D%20k%20%5Cmid%20%5Clambda)%20%3D%20%5Cfrac%7B%5Clambda%5Ek%20e%5E%7B-%5Clambda%7D%7D%7Bk!%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Clog%20P(y_i%20%5Cmid%20%5Clambda_i)%20%3D%20y_i%20%5Clog(%5Clambda_i)%20-%20%5Clambda_i#0
https://www.codecogs.com/eqnedit.php?latex=L(%5Clambda)%20%3D%20-%20%5Csum_%7Bi%3D1%7D%5E%7BI%7D%20%5Cleft(%20y_i%20%5Clog(%5Clambda_i)%20-%20%5Clambda_i%20%5Cright)#0

Here, A = f(%:) is the model's predicted rate, and yi is the observed count. This loss
can be used to train the model.

Optimization

Q1. How to know whether your model is suffering from the problem of
Exploding Gradients?

Answer: By taking incremental steps towards the minimal value, the gradient descent
algorithm aims to minimize the error. The weights and biases in a neural network are updated
using these processes. However, at times, the steps grow excessively large, resulting in
increased updates to weights and bias terms to the point where the weights overflow (or
become NaN, that is, Not a Number). An exploding gradient is the result of this, and it is an
unstable method.

There are some subtle signs that you may be suffering from exploding gradients during the

training of your network, such as:
e The modelis unable to get traction on your training data (e g. poor loss).
e The modelis unstable, resulting in large changes in loss from update to update.
e The model loss goes to NaN during training.

If you have these types of problems, you can dig deeper to see if you have a problem with
exploding gradients. There are some less subtle signs that you can use to confirm that you
have exploding gradients:
e The model weights quickly become very large during training.
e The model weights go to NaN values during training.
e The error gradient values are consistently above 1.0 for each node and layer during
training.

Q2. What is the Vanishing Gradient Problem in Artificial Neural
Networks and How to fix it?

Answer: The vanishing gradient problem is encountered in artificial neural networks with
gradient-based learning methods and backpropagation. In these learning methods, each of
the weights of the neural network receives an update proportional to the partial derivative of
the error function with respect to the current weight in each iteration of training. Sometimes
when gradients become vanishingly small, this prevents the weight to change value.

https://www.codecogs.com/eqnedit.php?latex=%5Clambda_i%3Df(x_i)#0

When the neural network has many hidden layers, the gradients in the earlier layers will
become very low as we multiply the derivatives of each layer. As a result, learning in the
earlier layers becomes very slow which can be used in learning. This problem of vanishing
gradient descent happens when training neural networks with many layers because the
gradient diminishes dramatically as it propagates backward through the network.

Some ways to fix it are:
e Use skip/residual connections.
e Using ReLU or Leaky ReLU over sigmoid and tanh activation functions.
e Use models that help propagate gradients to earlier time steps like in GRUs and LSTMs.

Q3.When it comes to training an artificial neural network, what could
be the reason why the loss doesn't decrease in a few epochs? What
can be done for this?

Answer: Some of the reasons why the loss doesn't decrease after a few Epochs are:
a) The model is under-fitting the training data.

b) The learning rate of the model is large.

c) The initialization is not proper (like all the weights initialized with 0 doesn't make the
network learn any function)

d) The Regularisation hyper-parameter is quite large.

e). The classic case of vanishing gradients

Q4.Explain how backpropagation works in a neural network? Please
give code for this backpropagation and also provide dry run.

Answer: Backpropagation is the algorithm used to train neural networks by minimizing the
error between the predicted output and the actual output. It consists of two main phases: the
forward pass, where predictions are made, and the backward pass, where gradients are
computed and weights are updated based on the error.
def backward(self, X, y, output, learning_rate):

output_error =y - output

output_delta = output_error * sigmoid derivative(output)

self.weights_hidden_output += np.dot(self.hidden_layer output.T,
output_delta)*

learning rate

self.bias_output += np.sum(output_delta, axis=@) * learning_rate
hidden_error = np.dot(output_delta, self.weights_hidden_output.T)
hidden_delta = hidden_error * sigmoid_derivative(self.hidden_layer_output)
self.weights _input_hidden += np.dot(X.T, hidden_delta) * learning_rate
self.bias_hidden += np.sum(hidden_delta, axis=@) * learning_rate

Q5. What is optimiser and state type of optimisers and when to
use which type of optimiser?

Answer: An optimizer in deep learning is an algorithm used to adjust the weights and biases
of a neural network during training, in order to minimize the loss function. Optimizers guide
the model in finding the optimal set of parameters (weights) to improve its predictive
accuracy. They do this by updating the weights in response to the gradients computed during
backpropagation.

Types of Optimiser:

1. Stochastic Gradient Descent (SGD): A variant of gradient descent that updates weights
for each training sample rather than the entire dataset. Best for convex loss functions
and when the dataset is very large. It works well with shallow networks or when
training stability is not an issue.One problem is that it can converge slowly and may
struggle with complex, non-convex loss surfaces.

2. Momentum-based SGD: Extends SGD by adding a momentum term to speed up
learning and avoid getting stuck in local minima. Helps accelerate learning in deep
networks and when facing high-gradient noise. Use it when you want faster
convergence than plain SGD.

3. Nesterov Accelerated Gradient (NAG): A variation of momentum-based SGD that looks
ahead by adjusting the gradient before the parameter update. Used when training
deep neural networks and you want an even faster convergence with a more refined
approach to momentum.

4. Adagrad (Adaptive Gradient Algorithm): An optimizer that adapts the learning rate for
each parameter based on the history of gradients. Effective for sparse data and
features (e.g., NLP tasks). It adapts well to infrequent features but suffers from
decaying learning rates over time.

5. RMSProp (Root Mean Square Propagation): An optimizer that normalizes the gradients
using a moving average of squared gradients. It works well in online settings, recurrent

neural networks, and for non-stationary objectives. Best for tasks where Adagrad
would slow down due to diminishing learning rates.

6. Adam (Adaptive Moment Estimation): Combines the advantages of both
momentum-based SGD and RMSProp by using moving averages of both the gradient
and its squared values. Widely used in a variety of tasks and architectures, especially
for deep learning models. It’s highly effective for large-scale problems and sparse data.

7. AdaMax: A variant of Adam that uses the infinity norm of the gradient for weight
updates. It is useful when the Adam optimizer fails due to exploding gradients or when
Adam's assumptions do not hold well.

8. Nadam: A combination of Adam and Nesterov accelerated gradient, adding a
momentum term to Adam.lt is useful for tasks where both Adam and NAG are suitable,
offering faster convergence.

Q6 . What is regularization and state type of optimisers and when to
use which type?

Answer:
Regularization is a technique in machine learning and deep learning used to prevent

overfitting by penalizing or constraining the model's complexity. Overfitting occurs when a
model learns the noise in the training data, performing well on it but poorly on unseen data
(test data). Regularization helps the model generalize better by discouraging overly complex
models that fit the training data too closely.

Types of Regularization:

e |1 Regularization: Adds a penalty equal to the absolute value of the weights in the loss
function. Used for feature selection, sparse models, or when you believe some features
are irrelevant.

e |2 Regularization: Adds a penalty proportional to the square of the weights in the loss
function. Used for models where you want to reduce overfitting without eliminating
any features (common in dense feature spaces).

e Elastic Net: Acombination of L1 and L2 regularization. Used for balancing between L1
and L2, especially for high-dimensional data.

e Dropout: A technique where randomly selected neurons are ignored during each
forward and backward pass forcing network not to rely too much on any particular
neuron. It is used for deep networks, especially convolutional and recurrent neural
networks, to prevent overfitting.

e Early Stopping: A technique where training is stopped as soon as the model's
performance on validation data starts to degrade (to avoid overfitting). For training

with a limited number of epochs to prevent overfitting based on validation
performance.

e Max-Norm Regularization: Constrains the weights to not exceed a fixed maximum
norm. To constrain the weights and prevent the network from relying too heavily on
any particular neuron.

Q7. What is the difference between odds and probability? How
are each defined? How are log(odds) related to logistic
regression?

Answer: Odds are the ratio of something happening to that something not happening,
whereas probability is the ratio of something happening to the total number of
possibilities.

ﬁ..'j{l—.'jl*;r'

P(X) = 5ot
The probability in logistic regression is modeled as 1 4 erttils=

Q8. You're working on a multivariate regression model to predict a
person's height (in meters) and weight (in kilos) based on some input
data x. Given that height and weight have very different ranges, what
potential problems could arise from this disparity? Additionally,
propose two solutions to address these issues effectively?

Answer:
Problems:
1. Large Scales: It may make the height vs. weight ~50-100+kg about determining the model's

focus to better predict the weight over height with biased predictions.

2. Slow Optimization: Large differences in magnitudes may reduce optimization where the
model might not be optimized to learn it faster.

Solutions:

1. Feature Scaling: Standardize or normalize both height and weight by ensuring that they are
on the same scale, for example through subtracting the mean and then dividing by the
standard deviation.

2. Weighted Loss Function: Use a weighted loss function whereby different weights are
assigned to different target variables, depending on their scale. This model is able to treat the
output of each target equally and usually yields better results during training.

Q9. Can (non-stochastic) gradient descent with a fixed learning rate

escape local minima?

Answer:

Yes! The distance moved just depends on the gradient at the current point and the learning
rate. The movement pays no attention to whether it crosses from valley to valley. Usually, the
learning rate is very small though, so this may not actually happen in practice.

Hyperparameter & Tuning

Q1.Name and explain a few hyperparameters used for training a

neural network?

Answer:

Hyperparameters are any parameter in the model that affects the performance but is not
learned from the data unlike parameters (weights and biases), the only way to change it
is manually by the user.

Number of nodes: number of inputs in each layer.

Batch normalization: normalization of inputs in a layer.

Learning rate: the rate at which weights are updated.

Dropout rate: percent of nodes to drop temporarily during the forward pass.
Kernel: matrix to perform dot product of image array with

Activation function: defines how the weighted sum of inputs is transformed into
outputs (e.g. tanh, sigmoid, softmax, Relu, etc)

Number of epochs: number of passes an algorithm has to perform for training
Batch size: number of samples to pass through the algorithm individually. E.g. if
the dataset has 1000 records and we set a batch size of 100 then the dataset will
be divided into 10 batches which will be propagated to the algorithm one after
another.

e Momentum: Momentum can be seen as a learning rate adaptation technique that
adds a fraction of the past update vector to the current update vector. This helps
damps oscillations and speed up progress towards the minimum.

Optimizers: They focus on getting the learning rate right.
Adagrad optimizer: Adagrad uses a large learning rate for infrequent features
and a smaller learning rate for frequent features.

e Other optimizers, like Adadelta, RMSProp, and Adam, make further
improvements to fine-tuning the learning rate and momentum to get to the
optimal weights and bias. Thus getting the learning rate right is key to
well-trained models.

e Learning Rate: Controls how much to update weights & bias (w+b) terms after
training on each batch. Several helpers are used to getting the learning rate right.

Q2.What might happen if you set the momentum hyperparameter too
closeto 1 (e.g.,0.9999) when using an SGD optimizer?

Answer:

If the momentum hyperparameter is set too close to 1 (e.g., 0.99999) when using an SGD
optimizer, then the algorithm will likely pick up a lot of speed, hopefully moving roughly
toward the global minimum, but its momentum will carry it right past the minimum.

Then it will slow down and come back, accelerate again, overshoot again, and so on. It may
oscillate this way many times before converging, so overall it will take much longer to
converge than with a smaller momentum value.

Also since the momentum is used to update the weights based on an "exponential moving
average" of all the previous gradients instead of the current gradient only, this in some sense,
combats the instability of the gradients that comes with stochastic gradient descent, the
higher the momentum term, the stronger the influence of previous gradients to the current
optimization step (with the more recent gradients having even stronger influence), setting a
momentum term close to 1, will result in a gradient that is almost a sum of all the previous
gradients basically, which might result in an exploding gradient scenario.

Q3. What are the hyperparameters that can be optimized for the
batch normalization layer?

Answer:

The y and B hyperparameters for the batch normalization layer are learned end to end by the
network. In batch-normalization, the outputs of the intermediate layers are normalized to
have a mean of 0 and standard deviation of 1. Rescaling by y and shifting by B helps us change
the mean and standard deviation to other values.

Q4. What are the hyperparameters that can be optimized for the
batch normalization layer?

Answer: The y and 3 hyperparameters for the batch normalization layer are learned end to
end by the network. In batch-normalization, the outputs of the intermediate layers are
normalized to have a mean of 0 and standard deviation of 1. Rescaling by y and shifting by 3
helps us change the mean and standard deviation to other values.

Q5. How do you choose hyperparameters for deep learning models?

Answer: Choosing hyperparameters for deep learning models is not that easy because of the
complexity and size of neural networks.

The following are the main strategies:

Understanding the Model Architecture

e Learning Rate: Methods such as learning rate scheduling or adaptive learning rates are
commonly employed; such methods are applied inside optimizers like Adam or
RMSprop.

e Grid Search or Random Search: This method checks a predefined list of
hyperparameter values.

e Bayesian Optimization: efficiently searches the hyperparameter space. This is achieved
by developing a probabilistic model that predicts performance based on past
evaluations.

e Cross Validation: the robustness of hyperparameter choices could be assured. This
way, selected hyperparameters lead to models generalizing well for unseen data.

e Early Stopping: This may prevent overfitting and will also alert you if you need to
adjust hyperparameters, such as a batch size or number of epochs.

e Hyperparameter Tuning Frameworks: The advantage of using automated
hyperparameter tuning frameworks is the ease with which they help to execute the
tuning process and present indications based on the past performance.

e Iterative Approach: Hyperparameter tuning is typically an iterative process. Start with
broad ranges and narrow them down according to the performance of your model,
learned from previous experimental results.

e Batch Size and Regularization: Experimenting with batch size and regularization as this
is a significant factor in getting models to converge and generalize well.

With such strategies and methodology in your approach, you can adequately settle on the
choice of hyperparameters that improve performance and robustness in deep learning
models.

Q6. Give us an example of using transfer learning to fine-tune a
pre-trained deep learning model for a new task?

Answer: VGG, BERT, or ResNet, are well-known examples of pre-trained models that can be
loaded for transfer learning and fine-tuning purposes. Specifically, the process involves
replacing the model head, i.e. the final classification layer, with a new one suited to the target
task.

After this slight structural change to the model architecture, we proceed to retrain it on a new
dataset using a low learning rate to adapt the model weights to the new task while major
features originally learned by the pre-trained models are mostly kept.

Computer Vision

Q1. Explain the concept of image segmentation and its applications.

Answer:

e |mage segmentation is a computer vision technique that partitions a digital image into
discrete groups of pixels — image segments — to inform object detection and related
tasks. By parsing an image’s complex visual data into specifically shaped segments,
image segmentation enables faster, more advanced image processing.

e Conventional image segmentation algorithms process high-level visual features of each
pixel, like color or brightness, to identify object boundaries and background regions.

e Being a highly versatile and practical method of computer vision, image segmentation
has a wide variety of artificial intelligence use cases, from aiding diagnosis in medical
imaging to automating locomotion for robotics and self-driving cars to identifying objects
of interest in satellite images.

Q2. What is object detection, and how does it differ from image

classification?
Answer:

e Object detection is a computAnswer:

e Image segmentation is a computer vision technique that partitions a digital image into
discrete groups of pixels — image segments — to inform object detection and related
tasks. By parsing an image’s complex visual data into specifically shaped segments,
image segmentation enables faster, more advanced image processing.

e Conventional image segmentation algorithms process high-level visual features of
each pixel, like color or brightness, to identify object boundaries and background
regions.

e Beinga highly versatile and practical method of computer vision, image segmentation
has a wide variety of artificial intelligence use cases, from aiding diagnosis in medical
imaging to automating locomotion for robotics and self-driving cars to identifying
objects of interest in satellite images.

e ervision task that aims to locate objects in digital images. As such, it is an instance of
artificial intelligence that consists of training computers to see as humans do,
specifically by recognizing and classifying objects according to semantic categories.

e Obiject localization is a technique for determining the location of specific objects in an
image by demarcating the object through a bounding box.

e Object classification is another technique that determines to which category a
detected object belongs.

e The object detection task combines subtasks of object localization and classification
to simultaneously estimate the location and type of object instances in one or more
images.

e Image segmentation (or semantic segmentation) is similar to object detection, albeit
more precise. Like object detection, segmentation delineates objects in an image
according to semantic categories. But rather than mark objects using boxes,
segmentation demarcates objects at the pixel level.

Q3. Explain how YOLO's "one-stage" detection framework differs from
the "two-stage" approach of Faster R-CNN. What are the trade-offs in

terms of speed and accuracy?
Answer: YOLO (One-Stage Detection)

e YOLO is a one-stage object detection framework that performs both localization and
classification in a single pass through the neural network.

o Fasterinference time: YOLO's single-pass design makes it computationally
efficient and well-suited for real-time applications.

o Simplified architecture: The lack of a separate region proposal step simplifies
the model and reduces complexity.

o Lower accuracy: The one-stage approach can be less accurate than two-stage
detectors, especially for smaller objects.

Faster R-CNN (Two-Stage Detection)

e Faster R-CNN is a two-stage object detection framework that first generates region
proposals and then classifies and refines those proposals.

o Higher accuracy: The separate stages allow the model to focus on region
proposals and classification/regression independently, leading to better
performance.

o Flexibility: The two-stage design provides more flexibility in terms of
customizing and optimizing each component.

o Slower inference time: The additional region proposal step makes Faster R-CNN
computationally more expensive than one-stage detectors.

Trade-offs and Considerations When choosing between one-stage and two-stage object
detection frameworks, the primary trade-off is between speed and accuracy. YOLO's
one-stage approach is generally faster, while Faster R-CNN's two-stage design tends to be
more accurate, especially for small objects.

Q3. SSD (Single Shot Detector) relies on different scale feature maps
for object detection. How does this architecture help with detecting

objects of varying sizes?
Answer:

1. Scale Matters for Object Detection:
o Perspective changes the scale of objects in an image. Larger objects appear
bigger, while smaller objects appear smaller.
2. Using Lower-Resolution Feature Maps for Larger Objects:
o Asthe CNN processes the image, the spatial dimensions of the feature maps
decrease.
o SSD uses these lower-resolution feature maps (e.g. 4x4) to detect larger-scale
objects in the image.
3. Using Higher Resolution Feature Maps for Smaller Objects:

o The higher resolution feature maps (e.g. 38x38) from earlier CNN layers are
used to detect smaller objects.
4, Customized Default Bounding Boxes per Feature Map Layer:
o SSD defines a set of default bounding boxes for each feature map layer, with
the scale of the boxes increasing from the earlier to later layers.
o This allows the model to have the appropriate default box sizes to match the
expected object sizes at each resolution.

By leveraging multi-scale feature maps and customized default boxes, SSD is able to
effectively detect objects of varying sizes within a single pass through the network.

Q4. Explain the Scale-Invariant Feature Transform (SIFT) algorithm.
Answer: Scale-invariant feature Transform (SIFT) is a widely used method for keypoint
detection and local feature extraction. It's robust to changes like scale, rotation, and
illumination, making it effective for tasks such as object recognition, image stitching, and 3D
reconstruction.

SIFT vs. Modern Techniques

While SIFT has long been a staple in the computer vision community, recent years have
introduced alternative methods. For instance, convolutional neural networks (CNNs) are
increasingly being used to learn discriminative image features, especially due to their
effectiveness in large-scale, real-world applications.

Code Example: SIFT Using OpenCV
Here is the Python code:

Import the required libraries
import cv2

Load the image in grayscale
image = cv2.imread('image.jpg', 0)

Create an SIFT object
sift = cv2.SIFT _create()

Detect keypoints and descriptors
keypoints, descriptors = sift.detectAndCompute(image, None)

Visualize the keypoints

image _with_keypoints = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('Image with Keypoints', image_with_keypoints)
cv2.waitKey(9)

cv2.destroyAllWindows ()

Q5. Faster R-CNN introduces the Region Proposal Network (RPN). Can
you explain how RPN improves upon traditional region proposal
methods and where is it inserted in the R-CNN architecture?

Answer: Region Proposal Network (RPN), which is, as its name suggests, used to generate
object proposals. So the primary differentiator for Faster R-CNN is the RPN which is inserted
after the last convolutional layer.

This is trained to produce region proposals directly without the need for any external
mechanism like Selective Search. After this we use ROl pooling and an upstream classifier and
bounding box regressor similar to Fast R-CNN.

classifier

Rol pooling

propoy

Region Proposal Network

feature maps

conv layers ,
y |

el T
=

e —————

Q6. How does YOLO achieve real-time object detection, and what

optimizations are responsible for this speed?
Answer: Key optimizations:

1. One-Stage vs. Two-Stage Approach:
o YOLO uses a one-stage object detection approach, as opposed to the two-stage
approach of detectors like Faster R-CNN.
2. Predicting Bounding Boxes and Classes Simultaneously:
o Foreach grid cell, YOLO predicts the bounding boxes, objectness scores, and
class probabilities all at once.
o Thissingle forward pass through the network is much faster than the
sequential region proposal and classification steps in a two-stage detector.
3. Smaller and Simpler Network Architecture:
o The simpler architecture means fewer parameters and computations, leading
to faster inference times.
4. Non-Maximum Suppression (NMS) Optimization:
o YOLO applies NMS to remove duplicate detections efficiently, further improving
the speed of the inference process.
5. Batch Processing:
o YOLO can process multiple images in a batch, leveraging the parallelization
capabilities of modern hardware (e.g., GPUs) to achieve even faster inference
times.

The combination of the one-stage design, simplified architecture, resolution tradeoffs, and
efficient post-processing techniques allows YOLO to achieve impressive real-time object
detection speeds, often reaching 30-60 frames per second (FPS) or more, depending on the
specific hardware and model version used.

Q7. What is the role of Feature Pyramid Networks (FPN) in object
detection? How does it enable multi-scale detection?

Answer:

1. Capturing Multi-scale Features:
o FPN leverages the hierarchical structure or backbone of a convolutional neural
network (CNN) to capture features at multiple scales.

2. Feature Fusion and Upsampling:

o FPN performs feature fusion by combining the feature maps from different
levels of the pyramid.

o Ituses lateral connections to fuse the semantically strong but spatially coarse
features from the higher levels with the spatially fine but semantically weak
features from the lower levels.

3. Multi-scale Object Detection:

o The resulting feature pyramid contains rich multi-scale features, which are then
used by the object detection head (e.g., region proposal network, classification,
and bounding box regression).

o Different levels of the feature pyramid are used to detect objects of varying
sizes.

o The higher levels of the pyramid are responsible for detecting larger objects,
while the lower levels handle the detection of smaller objects.

The key advantage of FPN is that it allows the object detection model to effectively handle
objects of different scales within a single, unified framework. By leveraging the inherent
multi-scale nature of CNN feature maps and combining them through the feature pyramid,
FPN enables efficient and accurate detection of objects at various scales.

Q8. How would you optimize the computational cost of a Feature

Pyramid Network (FPN) without significantly compromising accuracy?
Answer:

1. Pyramid Levels Optimization:

o Analyze the contribution of each pyramid level to the overall detection
performance and reduce the number of pyramid levels or adjust their spatial
dimensions to reduce the computational cost.

2. Efficient Backbone Network:
o Choose a more lightweight and efficient backbone network (e.g., MobileNet,
EfficientNet) instead of a large, complex model like ResNet.
3. Feature Map Compression:
o Investigate techniques to compress the feature maps within the FPN, such as:
m Channel pruning
m Low-rank factorization
m Quantization
4. Spatial Resolution Reduction:

o Reduce the spatial resolution of the feature maps in the FPN, especially at the

higher pyramid levels.

o This can be achieved by using strided convolutions or dilated convolutions
instead of regular convolutions.

The specific optimization techniques to apply will depend on the target hardware, the
required performance characteristics, and the trade-offs between accuracy and
computational cost. It's essential to evaluate the impact of these optimizations on the overall
detection performance and choose the most suitable approach for your application.

Q9. In the SSD (Single Shot Multibox Detector), each feature map layer is
responsible for detecting objects at different scales. Suppose that for a specific
feature map layer, the default boundary box scale is 0.4, and the target aspect
ratiosare 1, 2, 3,1/2,and 1/3.

A. Calculate the width and height of the default boundary boxes for the given
feature map layer with the following target aspect ratios:

B. If the number of cells in this feature map layer is 16x16, how many default
boundary boxes will be generated for this layer?

Answer:
Part A:

Given s = 0.4, for each target aspect ratio r:

1. Forr = 1:
w=s=04h=5=04

2. Forr = 2:
w=258x+12=0.4x+2~04x 1414 ~ 0.566
h=s3:4/2=04: 1414 ~ 0.283

3. Forr = 3:
w=28x%xv3=04x+v3~0.4x 1.732 ~ 0.693
h=s:43=047:1732~0.231

4 Forr =1/2:
w=sx1/1/2=0.4x+0.5~ 0.4 x 0.707 ~ 0.283
h=s++4/1/2 =043 0.707 ~ 0.566

5 Forr =1/3:
w=sx+/1/3 =0.4 x v/0.333 =~ 0.4 x 0.577 ~ 0.231
h=s++/1/3 =043 0577 ~ 0.693

Part B:

For each cell in the 1616x16 feature map, there are 6 default boundary boxes (5 aspect ratios plus 1
additional scale).
Thus, the total number of default boundary boxes = 16x16x6==1536 boundary boxes.

Q10. In an object detection task, you are using the SSD (Single Shot
Multibox Detector) model, which applies Non-Maximum Suppression
(NMS) to eliminate duplicate predictions of the same object. SSD sorts
the predictions by confidence score, starting with the highest. For a

given prediction, SSD compares it with previously considered
bounding boxes of the same class and removes any predictions that
have an Intersection over Union (loU) greater than 0.45.

Now, consider the following scenario:

You have detected multiple bounding boxes for objects in an image,
with confidence scores and loU values provided below. After sorting by
confidence score, the following predictions are evaluated for a given
class:

e Box A: Confidence =0.95, loU with Box B =0.65, loU with Box C =
0.30

e Box B: Confidence =0.90, loU with Box C=0.50

e Box C: Confidence=0.85

Task 1:
Explain which bounding boxes will be kept after applying
Non-Maximum Suppression with an loU threshold of 0.45.

Task 2:
Describe the steps followed by SSD’s NMS algorithm to arrive at this
result.

Answer:
Task 1:

e Box A has the highest confidence score (0.95) and is retained.

e Box B hasan loU of 0.65 with Box A, which is higher than the threshold of 0.45.
Therefore, Box B will be removed because it likely overlaps significantly with Box A.

e Box Chasan loU of 0.30 with Box A (below the threshold of 0.45), so it will be retained.

Final result:

e Retained Boxes: Aand C

e Removed Box: B
Task 2:

1. Step 1: Sort predictions by confidence score.
o Inthis case: Box A (0.95), Box B (0.90), Box C (0.85).
2. Step 2: Start with the box having the highest confidence score (Box A).
o Retain Box Asince it has the highest score.
3. Step 3: Compare Box B with Box A using loU.
o loU(Box A, Box B) =0.65, which is greater than the threshold of 0.45.
o Remove Box B because it overlaps significantly with Box A.
4. Step 4: Compare Box C with Box A using loU.
o loU(Box A, Box C) =0.30, which is less than 0.45.
o Retain Box C since the overlap is small.

Conclusion: After applying NMS, only Box A and Box C are kept, while Box B is removed due to
significant overlap with Box A.

Q11: In computer vision, tasks like object detection, semantic
segmentation, and instance segmentation are commonly used for
different applications.

Consider the following scenarios:

1. Scenario 1: You are building a deep learning model that needs to
detect and draw bounding boxes around objects of interest in an
image (e.g., identifying multiple cars in a traffic scene).

o Question 1a: Which type of task is being performed here,
and how does the model decide where to place the
bounding boxes?

o Question 1b: What would be the neural network
architecture’s final output in this case?

2. Scenario 2: In a different application, you want the model to
classify each pixel in an image to determine which parts belong

to different object classes, without distinguishing between
different instances of the same class (e.g., identifying all pixels
that belong to the road, sky, or cars in the image).

o Question 2a: Which task are you performing now, and what
is the neural network trained to output?

o Question 2b: How does this task differ from instance
segmentation?

3. Scenario 3: You want your model to go one step further and
identify individual instances of objects (e.g., distinguishing
between different cars in an image).

o Question 3a: Which task is being performed now, and how
is it different from semantic segmentation?

o Question 3b: How does the Mask R-CNN architecture solve
this problem, and what are the two main components of
the Mask R-CNN model?

o Question 3c: Explain how Rol Align and binary mask
classification are used to refine the outputs in this model.

Answer:
part 1:

e Question la: Thisis an object detection task, where the model detects and draws
bounding boxes around objects in the image.

e Question 1b: The model outputs the coordinates of bounding boxes (x, y, width,
height) along with class probabilities for each detected object.

part 2:

e Question 2a: This is a semantic segmentation task, where the model classifies each
pixel into object classes like road, sky, or cars.

e Question 2b: It differs from instance segmentation because semantic segmentation
does not distinguish between different instances of the same class (e.g., all cars are
labeled the same).

part 3:

e Question 3a: This is instance segmentation, where the model identifies and segments
each individual object instance (e.g., different cars).

e Question 3b: Mask R-CNN solves this by first detecting bounding boxes (object
detection) and then performing segmentation on each box.

e Question 3c: Rol Align refines bounding boxes, and the binary mask classifier performs
segmentation within each box by distinguishing between the object and the
background (1/0).

Q12: Consider that you have 3 cows in an image, and you apply
Semantic Segmentation to it.

Will the model be able to distinguish between the 3 cows, or will it just
identify the area they occupy?

Answer: In semantic segmentation, the model classifies each pixel in an image to a specific
class (e.g., cow, background). This means that while it can identify the presence of cows and
distinguish the areas they occupy, it does not differentiate between individual cows. All cows
in the image would be assigned the same label, typically represented by a single color for that
class.

If you need to distinguish between individual cows (e.g., to count them separately), you would
use instance segmentation instead. Instance segmentation not only classifies each pixel but
also distinguishes between different instances of the same class (e.g., Cow 1, Cow 2, Cow 3),
allowing for unique identification of each cow in the image.

Q13. Explain how attention weights are computed in a typical
attention mechanism. Illustrate the process with a mathematical
example.

Answer:

In an attention mechanism, the goal is to compute a weighted representation of a set of
inputs based on their relevance to a specific task or output. The basic idea is to assign
different weights to different parts of the input data, allowing the model to focus on the most
relevant features.

Key Components

1. Query (Q): Represents the information we want to focus on.

2. Key (K): Represents the data we will be looking at to find relevance.

3. Value (V): The actual information we will use after determining the relevance through
attention weights.

Steps to Compute Attention Weights

1. Compute the Dot Products: Calculate the dot product between the query vector and each key

vector to determine the compatibility score.
score; = Q - K
2. Scale the Scores: To stabilize gradients during training, scale the scores by dividing them by the

square root of the dimension of the key vectors (denoted as dy,).

score;
Vi,

3. Apply Softmax: Apply the softmax function to the scaled scores to obtain the attention weights.

scaled score, =

This normalizes the scores into a probability distribution.

exp(scaled_score;)

attention weight, =
>_; exp(scaled score;)

4. Compute the Qutput: Finally, compute the weighted sum of the value vectors using the

attention weights.

output = Z attention wcightt_ %

Continuation question : Okay great, now i want you to calculate the attention weights for the
following data -

Let's say we have:
* Query @ = [1,0]
e Keyvectors K1 = [1,0], Ky = [0, 1]
e Value vectors V] = [2,3], V5 = [4, 5]

e Dimension of the key vectors dj, = 2

Step 1: Compute the Dot Products
e score; = Q- K, =[1,0-[1,0] =1
e score; = Q- K, =1[1,0]-[0,1] =0

Step 2: Scale the Scores

scaled score, = =~ 0.707

1

Sl
o
=

scaled score, = — =10
V2

Step 3: Apply Softmax

exp(0.707) _ 2.025
exp(0.707) + exp(0) ~ 2.025 | 1

exp(0) _
exp(0.707) + exp(0) ~ 2.025 | 1

attention weight, = ~ 0.668

attention weight, = ~ 0.332

Step 4: Compute the Output
output = 0.668 - V| | 0.332 -V,

— 0.668 - [2,3] + 0.332 - [4,5]

— [1.336,2.004] + [1.328, 1.66] = [2.664, 3.664]

Q14. Explain the concept of multi-head attention in the Transformer
architecture. How does it enhance the model's ability to capture
different relationships within the input data?

Answer: Multi-head attention is a mechanism in the Transformer architecture that allows the
model to focus on different parts of the input sequence simultaneously. Each attention head
operates independently, enabling the model to capture various relationships and nuances
within the data.

By processing information in parallel, multi-head attention enhances the model's ability to
learn diverse representations. For example, one head might focus on syntactic relationships,
while another emphasizes semantic meanings. This diversity allows for a richer
understanding of context, which is crucial for tasks like machine translation.

Continuation question - Okay so in a Transformer model, we have the following
hyperparameters:

e Embedding Size: 6
e Query Size (equal to Key and Value size): 3
e Number of Attention Heads: 2

1.

2.

Understanding Dimensions
Given the above hyperparameters, calculate the shape of the Query (Q), Key (K), and Value (V)

matrices after they have been passed through their respective Linear layers for a batch size of B

Attention Score Calculation

If the shape of the Q matrix after splitting into attention heads is (B, H, S, Q) where:
s B s the batch size
s H is the number of heads
¢ Sis the sequence length (let's assume S = 4)

¢ () is the query size per head

Calculate the resulting shape of the Q matrix after performing the matrix multiplication 2 - KT

to compute the attention scores, assuming K also has been split into heads.

. Merging Attention Scores

After computing the attention scores for each head, these scores need to be merged. Given that

the shape of the attention scores for each head is (B, H, S, (Q), what will be the shape of the

merged attention score matrix after collapsing the head dimension?

1. Understanding Dimensions
The shape of the Q K, and V matrices after the Linear layers is (B, S, 6). After splitting for 2

heads, each will have:
« Q(B,S,3)
K (B,S,3)
« V:(B,S,3)

2. Attention Score Calculation

The shape of the Q matrix after splitting is (B, 2,4, 3) because:

s H=2
e §=4
. Q:3

When computing Q - K7, where K is also (B, 2,4, 3), the resulting shape of the attention

scores would be:

Attention Scores shape = (B, H, S,S) (4 for both Q and K)

3. Merging Attention Scores

The merged attention score matrix shape after collapsing the head dimension will be:

(B!S!HX Q): (B,S,QX 3] - (B}S}G)

Q15. In a comparison between a 20-layer CNN and a 56-layer CNN, the
authors found that the deeper model performed worse due to
vanishing/exploding gradients. Explain how ResNet’s skip connections
improve the performance of deeper networks and what the key
difference is compared to the traditional CNN architectures.

Answer: When deep neural networks have too many layers, they face the vanishing/exploding
gradient problem. This causes gradients to either become too small (vanishing) or too large
(exploding), making it difficult for the model to converge during training. ResNet solves this
issue by introducing residual blocks, which use skip connections to bypass certain layers. This
helps the model by allowing layers to learn residual functions rather than learning the full
transformation, making it easier to train very deep networks.

With ResNet, the skip connections allow deeper models (like 56-layer networks) to perform
better because they enable gradients to pass through layers without being diminished. This is
a key difference from traditional architectures, which require each layer to directly learn
transformations, making it harder to train deeper networks. ResNet effectively mitigates this
problem by focusing on learning residuals.

Q16. - Explain the main concept behind Highway Networks. What role
do the Transform Gate (T) and Carry Gate (C) play in controlling the
flow of information through the network?

Answer: Highway Networks are a type of neural network that introduce gated pathways to
control the flow of information through layers. These networks use two gates:

1. Transform Gate (T) - controls how much of the transformed input is passed to the next
layer.

2. Carry Gate (C) - allows the raw input to bypass the transformation and pass directly to
the next layer.

The key idea is that instead of transforming all inputs through non-linear functions like in
traditional networks, Highway Networks decide whether to transform or directly pass the
input, making it easier to train very deep networks by overcoming problems like vanishing
gradients.

Q17. Explain the primary purpose of using 1x1 convolutions in the
Inception Network (GoogLeNet) architecture. How does this technique
contribute to both performance improvement and computational
efficiency?

Answer: The 1x1 convolution in the Inception Network (GooglLeNet) is primarily used for
dimensionality reduction. It reduces the number of input channels, which drastically cuts
down the computational cost before applying more expensive convolutions like 3x3 or 5x5.
This helps improve performance by reducing the number of parameters and computation
required without losing significant information, allowing for deeper networks while avoiding
overfitting and minimizing resource consumption.

Q18. Consider an image of size 14x14x480 where you need to apply a
5x5 convolution. Compare the computational cost (in terms of
operations) when using 1x1 convolutions before the 5x5 convolution
to reduce dimensionality from 480 to 16 channels, versus performing
the 5x5 convolution directly without dimensionality reduction. How
much computational saving is achieved by using 1x1 convolutions?

e Without using 1x1 convolution: The number of operations for performing a 5x5 convolution
directly on an image of size 14 x 14 x 480 is:

Operations = 14 x 14 x 480 x (5 x 5) = 112.9 million operations.

e Using 1x1 convolution: First, apply 1x1 convolution to reduce the input from 480 channels to 16

channels:
1x1 Operations = 14 x 14 x 16 x (1 x 1 x 480) = 1.5 million operations.
Then, apply the 5x5 convolution on the reduced 16 channels:

5x5 Operations = 14 x 14 x 48 x (5 x 5 x 16) = 3.8 million operations.

Total operations with 1x1 convolutions:

1.5 million + 3.8 million = 5.3 million operations.

e Computational savings: By using the 1x1 convolution, the reduction in operations is:
112.9 million — 5.3 million = 107.6 million operations.

This demonstrates a significant reduction in computational cost, making the process much more

efficient.

Q19. What is the core concept behind EfficientNet, and how does the
compound scaling method improve its performance and
computational efficiency compared to previous CNN architectures?

Answer: EfficientNet is a family of CNNs that uses a novel compound scaling method to
uniformly scale the network’s width, depth, and resolution. Unlike previous architectures,

which scaled these dimensions independently, EfficientNet scales them together using a fixed
compound coefficient. This approach improves both the model's performance and
computational efficiency, allowing EfficientNet to achieve high accuracy while using fewer
resources. The compound scaling ensures that the network grows in a balanced manner,
preventing overfitting and excessive computational costs.

Q20. Consider two hidden layers of size 224x224 with C1 and C2
channels, respectively, connected by a 3x3 convolutional layer.
Describe how to initialize the weights using He initialization.

Answer: Understanding He Initialization

He initialization is particularly effective for layers using ReLU activation functions. The
purpose of this technique is to prevent the vanishing or exploding gradients problem by
setting the weights to small random values that are appropriately scaled.

Calculating the Number of Input Units

For a convolutional layer, the number of input units nnn is determined by the number of input
channels and the convolutional kernel size. In this case, since we have a 3x3 convolutional
kernel, we calculate nnn as:

n=C1x3x3
where C1 is the number of channels from the previous layer.
Applying He Initialization

To initialize the weights, we sample from a normal distribution centered at zero, with a
standard deviation defined by:

o=root(2/n) =root(2/C1x9)

So, the weights W would be initialized as:

W~N(0,0"2)

Q21. Consider a 2D convolutional layer with kernel size 5%5 that takes
3 input channels and returns 10 output channels. How many
convolutional weights are there? How many biases?

Answer: Number of weights=(Kernel heightxKernel widthxNumber of input
channels)xNumber of output channels

Given:

e Kernel size =5%5
e Number of input channels =3
e Number of output channels =10

We can substitute these values into the formula:

Number of weights=750
Number of Biases:

The number of biases in a convolutional layer is equal to the number of output channels
because each output channel has one bias term. Therefore:

Number of biases = Number of output channels = 10

Q22. Consider a 1D convolutional network where the input has three
channels. The first hidden layer is computed using a kernel size of
three and has four channels. The second hidden layer is computed
using a kernel size of five and has ten channels. How many biases and
how many weights are needed for each of these two convolutional
layers?

Answer: First Hidden Layer

e Inputchannels: 3
e Kernelsize: 3
e Output channels: 4

Number of Weights:

Number of weights=Kernel sizexInput channelsxOutput channels = 3x3x4=36
Number of Biases: The number of biases is equal to the number of output channels = 4
Second Hidden Layer

e Input channels: 4 (from the first layer)
e Kernelsize:5
e Output channels: 10

Number of Weights:
Number of weights=Kernel sizexInput channelsxOutput channels = 5x4x10=200
Number of Biases:

Number of biases=10

Q23. A network consists of three 1D convolutional layers. At each
layer, a zero-padded convolution with kernel size three, stride one,
and dilation one is applied. What size is the receptive field of the
hidden units in the third layer?

Answer: In a 1D convolutional network with a zero-padded convolution using kernel size 3,
stride 1, and dilation 1, the receptive field size can be calculated as follows:

1. Layerl:
o Kernelsize: 3
o Stride: 1
o Receptive field size: 3
2. Layer2:
o Kernelsize: 3
o Stride: 1
o Receptive field size: 3+(3-1)=5

3. Layer 3:

o Kernelsize: 3
Stride: 1

o Receptive field size: 5+(3-1)=7

Thus, the receptive field size of the hidden units in the third layeris 7.

Q24. A network consists of three 1D convolutional layers. At each
layer, a zero padded convolution with kernel size seven, stride one,
and dilation one is applied. What size is the receptive field of hidden
units in the third layer?

Answer: In this scenario, we will compute the receptive field sizes for three 1D convolutional
layers, each with kernel size 7, stride 1, and dilation 1:

1. Layerl:
o Kernelsize: 7
o Stride: 1
o Receptive field size: 7

2. Layer 2:

o Kernelsize: 7
Stride: 1
Receptive field size: 7+(7-1)=13

3. Layer 3:

o Kernelsize: 7
o Stride: 1
o Receptive field size: 13+(7-1)=19

Thus, the receptive field size of the hidden units in the third layer is 19.

Q25. Consider a convolutional residual block that contains a batch
normalization operation, followed by a ReLU activation function, and
then a 3x3 convolutional layer. If the input and output both have 512
channels, how many parameters are needed to define this block? Now

consider a bottleneck residual block that contains three batch
normalization/ReLU/convolution sequences. The first uses a 1x1
convolution to reduce the number of channels from 512 to 128. The
second uses a 3x3 convolution with the same number of input and
output channels. The third uses a 1x1 convolution to increase the
number of channels from 128 to 512. How many parameters are
needed to define this block?

Answer: Convolutional Residual Block
First Convolutional Layer (3x3 convolution):

Input channels =512

Output channels =512

Kernel size = 3x3

Number of parameters = (kernel height x kernel width x input channels + 1
(bias)) x output channels

o Number of parameters =
(3x3x512+1)x512=(9%x512+1)x512=(4608+1)x512=4609x512=2,359,488

o O O O

Batch Normalization:

o Each batch normalization layer has 2 parameters per channel (gamma and
beta).
o For 512 channels, the number of parameters = 2x512=1024

ReLU Activation:

o RelLU does not have any parameters.
Total Parameters for the Convolutional Residual Block:
Total=Convolutional Layer+Batch Norm=2,359,488+1024=2,360,512
Bottleneck Residual Block

This block consists of three sets of operations.

1. First Sequence (1x1 convolution):
o Inputchannels=512

o Output channels=128
o Number of parameters = (1x1x512+1)x128=(512+1)x128=513x128=65,664

2. Second Sequence (3x3 convolution):
o Inputchannels =128
o Outputchannels=128
o Number of parameters =
(3%x3%128+1)x128=(9x128+1)x128=(1152+1)x128=1153%x128=147,584

3. Third Sequence (1x1 convolution):
o Inputchannels =128
o Output channels=512
o Number of parameters = (1x1x128+1)x512=(128+1)x512=129x512=66,048

4, Batch Normalization:

o Each batch normalization layer has 2 parameters per channel.
o For 512 channels (third sequence) and 128 channels (first and second
sequences):
m First sequence: 2x128=256
m Second sequence: 2x128=256
m Third sequence: 2x512=1024

Total Batch Normalization Parameters:
256+256+1024=1536
Total Parameters for the Bottleneck Residual Block:

Total=First Sequence+Second Sequence+Third Sequence+Batch
Norm=65,664+147,584+66,048+1536=280,832

Summary

e Convolutional Residual Block: 2,360,512 parameters.
e Bottleneck Residual Block: 280,832 parameters.

NLP

Q1. What is Tokenization?

Answer: Tokenization is the process of breaking down text into individual units called tokens.
These tokens could be words, sentences, or subwords depending on the application. For
instance, breaking a sentence into words is word-level tokenization

Q2. What is Lemmatization?

Answer: Lemmatization reduces words to their base or root form, known as a lemma. Unlike
stemming, lemmatization considers the meaning of the word. For example, the lemmatizer
reduces "running" to "run" based on its part of speech.

Q3. What is Word2Vec? How does it work?

Answer: Word2Vec is a neural network-based approach that represents words in continuous
vector space where semantically similar words are mapped to nearby points. It works by using
either Continuous Bag of Words (CBOW) or Skip-gram models, predicting context words given
a word (CBOW) or predicting a word given its context (Skip-gram).

Q4. Show the generic pipeline to build a modern day, data driven NLP
system.

Answer-

DataAcquisition —{ TextCleaning | Pre-Processing — Enl:g?:te:rr?ng
1 :
! Improving the 1
: model |
: !
Monitoring and
Model Updating [€ Deployment |« Evaluation |« Modeling

Q5. How is Lemmatization different from Stemming? Give an example.
Answer- Lemmatization is mapping of various forms of a word to its base word whereas in
stemming we remove the suffixes from a word so that it is reduced to its base form.
Lemmatization needs greater linguistic knowledge. For example, “better” after stemming is
“better” but “better” after lemmatization is “good”.

Stemming Lemmatization
adjustable -> adjust was -> (to) be
formality -> formaliti better -> good

formaliti ->formal ~ meeting -> meeting
airliner ->airlin

Q6. For Tokenization, we mostly use NLTK and SpaCy. When will you

use what and why?

Answer- NLTK is more complex and requires more code to achieve some tasks but it is highly
customizable and one can experiment with different algorithms. Whereas, SpaCy is designed
for practical application and also it is more user friendly and quick to implement.

Prefer using SpaCy when we need a fast and reliable NLP library for real world applications
and when we want to implement NLP tasks quickly and efficiently. NLTK can be preferred in
research i.e. when you need to experiment with different models and algorithms.

Q7. What is Data Augmentation? How is it done in NLP projects?
Answer- Data Augmentation is taking a small dataset and use that in order to create more
data. Some ways are- Replacing entities, TF-IDF-based word replacement, Adding noise to
data, Back translation, Synonym replacement, Bigram flipping

Q9. What is Named Entity Recognition(NER)?

Answer- Named Entity Recognition helps in detection and categorization of proper namesin a
text into specific categories such as people, organisations, geographical markers, time
elements, etc.

NER helps in extracting structured information from unstructured text, making it easier to
analyse and understand. It is used in applications like information retrieval, question
answering, and more.

Q10. What is POS Tagging in NLP? What are some challenges related to POS

Tagging?
Answer- Part-of-Speech (POS) Tagging plays a fundamental role by identifying the
grammatical components of text, such as words and phrases, and labelling them with their
corresponding parts of speech.
Some of the challenges are:

1. Depending on the use or word or their context, parts of speech can differ.

2. Some words can have more than 1 POS. For example, the word “well” can be a noun,

adverb or an adjective.

Q11. Explain cosine similarity and its use in NLP?

Answer- Cosine similarity measures the similarity between two vectors by calculating the
cosine of the angle between them. In natural language processing (NLP), it's often used to
assess the similarity between text documents or word embeddings.It's used to compare text
documents in NLP by analysing word usage. It also helps to find similar words in models like
Word2Vec through vector comparison.

Q12. Explain the Bag of Words model and what are its limitations?
Answer- The Bag-of-Words (BoW) model is a simple and widely used method in NLP for
representing text data. It involves converting text into a vector of word frequencies, ignoring
grammar and word order.

Each unique word in the text corpus becomes a feature, and the vector represents the count
of each word in a document. This model is used for tasks like text classification and clustering.

Bag of Words (BoW) has some limitations that can affect its usefulness in certain tasks. It
ignores the order of words, which means it loses the flow of how words are used
together—something that’s important for tasks like language modelling or sentiment analysis.
It also tends to create large, sparse matrices when dealing with big vocabularies, which can

demand a lot of memory and processing power. Plus, BoW treats all words as separate from
each other, so it misses the context they appear in, and it gives equal importance to every
word, even if some aren’t very meaningful. Lastly, BoW struggles with words it hasn’t seen
before, making it less effective when dealing with new or rare words.

Q13. What are Text N- Grams in NLP?

Answer- N-grams are sequential word or character sets, with "n" indicating the number of
elements in a particular set. They play a crucial role in understanding context and text
prediction, especially in statistical language models.

Q14. Explain TF-IDF in NLP.

Answer- It stands for Term Frequency - Inverse Document Frequency. The idea behind it is to
quantify the importance of a term in a document with respect to its frequency in the
document and its rarity across multiple documents.

TF-IDF=TF * IDF

Q15. Why should we remove Stop Words from our corpus? Are there

any cases when we should not really remove them?

Answer-Stop words are words that are commonly used but have little to no value in helping
processors answer queries, for example - a,an,the,not,but,or,and etc. They provide no
meaningful information, especially if we are building a text classification model. Therefore,
we have to remove stopwords from our dataset.

As the frequency of stop words are too high, removing them from the corpus results in much
smaller data in terms of size.

But there are some cases where we should not remove the stop words.
Like- Language Translations, Chatbots, basically any case where any valuable data might be
lost.

Q16. What is the advantage of using Word Embedding Techniques over

other models?
Answer-
1. Similar words have similar vectors.

2. The Di

mensions of those vectors are low.

Q17. What are the steps of Sentimental Analysis of social media posts?

Answer-
1.
2.

Data collection: Gather a diverse dataset of social media posts with sentiment labels.
Preprocessing: Handle social media-specific elements like hashtags, @mentions,

emojis, and slang.

Feature extraction: Use techniques like word embeddings or TF-IDF, potentially

incorporating social media-specific features.

Model selection: Choose an appropriate model (e.g., Naive Bayes, SVM, or deep

learning models like LSTM or BERT).

Training and evaluation: Train the model and evaluate using metrics like accuracy,

F1-score, and confusion matrix.

Handling challenges: Address issues like sarcasm detection, mixed sentiments, and

context-dependent sentiments.

Q18. The above models are trained on what type of data and what are

its trai

Model

BERT

ning objectives?

Training Data

BooksCorpus, English Wikipedia

RoBERTa BooksCorpus, English Wikipedia, Common

GPT

T5

BART

Crawl

Diverse internet text (OpenAl WebText)

Various datasets across NLP tasks

CNN/Daily Mail, SQUAD, ConvAIR 2

Training Objectives

- Masked Language Modeling (MLM)
- Next Sentence Prediction (NSP)

- Masked Language Modeling (MLM)
(dynamic masking)

- Unidirectional Language Modeling
(predict next word)

- Text-to-Text format for all tasks
(masked language modelling)

- Denoising Autoencoder (reconstruct
original text from corrupted input)

LLama Publicly available datasets from diverse - Causal Language Modelling (predict
domains next token)

Q19. When should one use which model and what are the respective
limitations of these models?

Answer-

BERT:
When to Use: BERT is fantastic for tasks like text classification, sentiment analysis, named

entity recognition, and question answering. If one needs to understand the context of text or
categorise it, BERT is a solid choice.

When Not to Use: BERT might not be a good fit for something that requires deep
common-sense reasoning or creative writing.

Limitations:BERT struggles with common-sense reasoning and inference. It also doesn’t adapt
well to new tasks without fine-tuning and it can pick up biases from the data it was trained on.

RoBERTa:

When to Use: RoBERTa is an upgraded version of BERT. It works well for the same tasks but
often performs better because of its improved training methods.

When Not to Use: Just like BERT, it’s not great for tasks that need deep reasoning or creative
generation.

Limitations: ROBERTa has the same limitations as BERT regarding common-sense reasoning
and it is also resource-intensive when it comes to training.

GPT:

When to Use: GPT is good for text generation tasks.

When Not to Use: It is not suitable for tasks that require structured output like classifications
or tasks that require factual accuracy.

Limitations: It sometimes generates text that is easy to believe in butisn’t true.
T5:

When to Use: T5 treats every task as a text-to-text problem. It’s excellent for translation and
summarization.

When Not to Use: Not suitable for tasks that don't fit into the text-to-text framework.

Limitations: It requires a lot of computational resources for training. Also, its performance can
dip on very specialised tasks unless it is fine-tuned properly.

BART:

When to Use: BART is great for generating text and summarising information. It’s particularly
useful when input data is corrupted or jumbled.

When Not to Use: Not suitable if one needs strict factual accuracy in the outputs.

Limitations: The complexity of BART's architecture can lead to longer training times.
Additionally, it may struggle with maintaining logicality in long-form content.

LLaMA:

When to Use: LLaMA serves as a general-purpose model for understanding and generating
language.

When Not to Use:lt may not perform well on highly specialized tasks without enough
fine-tuning.

Limitations:LLaMA can be less transparent in how it makes decisions and also inherent biases
from its training data.

Q20. What will be the output of an encoder with 1024 input points?

Answer- There will be 1024 output points but the information will change in output with
respect to the input. The information will change based on how an encoder processes the

input. The encoder transforms the input data into new representations that capture
important relationships and patterns. Each output point reflects not just the original input but

also its context, making it easier to understand complex information. So, while the number of
points stays the same, the information they carry is richer and more meaningful.

Q21. How will you predict the next word using RNN and what are its
limitations?

Answer-

Limitations:

1Vanishing gradient problem: One of the significant drawbacks of basic RNNS is the vanishing
gradient problem. It occurs when gradients during training become extremely small as they
are backpropagated through time This limits the network's ability to capture long-range
dependencies

2. Exploding gradient problem: RNNs can also suffer from the exploding gradient problem,
where gradients become exceptionally large during training, causing numerical instability.
Exploding gradient easier to detect and manage

3. Limited Memory: Traditional RNNs have a limited memory capacity, and they struggle to
carry information across many time steps. This can be problematic when dealing with long
sequences where network may "forget" important information from earlier time steps

4. Biased Toward Recent Data. Lack of Global Context: Following from the above point, in an
RNN, as data progresses over time steps, the influence of past data diminishes. This means
the network can become biased toward more recent data in the sequence and struggle to
capture global context.

5. Difficulty with Parallelization: RNNs process data sequentially, which makes parallelization
challenging, leading to slower training. As a result, RNNs are not able to take complete
advantages of modern hardware architectures such as GPUs designed for parallel processing.

Q22. Explain why positional embeddings are added to word

embeddings?

Answer- Positional embeddings are added to the word embeddings to provide information
about the relative or absolute position of the tokens in the sequence. Without positional
embeddings, the model would treat permutations of the same set of words as identical. For
example, “The quick brown fox” would be indistinguishable from “fox brown quick The”.
Positional embeddings resolve this by providing a unique representation for each position in

the sequence, allowing the model to differentiate “The” as the first word from “fox” as the
last.

Q23. What is Attention Mechanism? Why is it important?

Answer- Attention mechanism helps models to focus on the most relevant portion of the input
data. The attention model in NLP searches for the most relevant information in the source
sentences. Before attention mechanisms came along, models like RNNs and LSTMs tried to
understand sentences by converting all the information into one small summary. This often
meant they missed important details, especially in longer sentences. In the world of images,
techniques like saliency maps aimed to point out what was important, but they weren’t very
flexible. Essentially, these earlier methods struggled to keep track of what really mattered.
The breakthrough with attention mechanisms was inspired by how we humans focus on
specific things while tuning out the noise around us, making it much easier for computers to
understand and recognize what’s important in both language and visuals.

1. Attention mechanism improves model performance by enabling them to focus on
relevant parts of the input sequence.

2. Reduces workload by breaking down lengthy sequences into smaller manageable
components.

3. Improves decision-making by enhancing the interpretability of the Al and NLP models.

Q24. What happens if there are more attention heads?

Answer-

1. As each attention head can pay attention to different parts of the input it makes the model
understand more details and relationships in the text.

2. If there’s only one attention head, some words might get too much focus. More heads help
spread attention evenly across all words, making sure everything is considered.

3. More heads mean more calculations, which can slow things down and require more
computer power. So, one needs to find the right balance.

Q25. Can one use encoders from one model and decoders from

another model?

Answer- No. The size might be different. Even if the size is the same, they must have been
trained on different datasets.

Q26. You will prefer using what among Transformers, RNNs or

traditional models if you have limited data?

Answer- If one has limited data, it's generally better to use RNNs (Recurrent Neural Networks)
or traditional models rather than transformers. RNNs can effectively handle sequential data
and are more suitable for smaller datasets because they require fewer parameters and are

133

less prone to overfitting compared to transformers, which need large amounts of data to
perform well due to their complexity. Traditional models, like logistic regression or decision
trees, are also good options for small datasets as they are simpler and easier to interpret.
Therefore, starting with RNNs or traditional models allows you to achieve reasonable
performance without the risk of overfitting that comes with using more complex transformer
architectures.

Q27. Explain the complete pipeline of RAG?

——_—
query response

/ \
structured
prompt +
Document unstructured Index — query + ' LLM
relevant data

programmatic

API /

Your data

Q28. What are the main challenges you face working in NLP?
Answer: One of the main challenges in NLP is accurately capturing
semantics—understanding the meaning behind words, phrases, and sentences,
especially with things like idioms and metaphors. Ambiguity is another big issue since
many words or phrases can have multiple meanings depending on the context. Context
itself is critical for accurate interpretation, especially when resolving references like
pronouns. Additionally, the diversity of languages and dialects presents a challenge,
particularly with low-resource languages. Data limitations and biases can impact both
performance and fairness, and lastly, integrating real-world knowledge and common
sense into NLP models is still an ongoing difficulty.

Q29. What do you mean by Text Augmentation in NLP and what
are the Text Augmentation techniques used in NLP?

Answer: Text Augmentation in NLP refers to the process that generates new or modified
textual data from existing data in order to increase the diversity and quantity of training
samples. Text augmentation techniques apply numerous alterations to the original text
while keeping the underlying meaning.

Different text augmentation techniques in NLP include:

1.Synonym Replacement: Replacing words in the text with their synonyms to introduce
variation while maintaining semantic similarity.

2.Random Insertion/Deletion: Randomly inserting or deleting words in the text to
simulate noisy or incomplete data and enhance model robustness.

3. Word Swapping: Exchanging the positions of words within a sentence to generate
alternative sentence structures.

4 Back translation: Translating the text into another language and then translating it
back to the original language to introduce diverse phrasing and sentence constructions.
5. Random Masking: Masking or replacing random words in the text with a special
token, akin to the approach used in masked language models like BERT.

6. Character-level Augmentation: Modifying individual characters in the text, such as
adding noise, misspellings, or character substitutions, to simulate real-world variations.
7. Text Paraphrasing: Rewriting sentences or phrases using different words and
sentence structures while preserving the original meaning.

8. Rule-based Generation: Applying linguistic rules to generate new data instances,
such as using grammatical templates or syntactic transformations.

Q30. Why do RNNS face a vanishing gradient problem?

Answer: Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
networks face the vanishing gradient problem, which significantly impacts their ability to
learn from long sequences of data. This issue arises primarily due to the way gradients
are propagated through these networks during backpropagation.

Vanishing Gradient Problem

Propagation of Gradients: In RNNs, as gradients are passed backward through time
steps, they are multiplied by weights at each step. If these weights are less than one,
repeated multiplication can lead to gradients that become exceedingly small, effectively
vanishing. This diminishes the model's ability to update weights meaningfully, especially
for earlier time steps in the sequence.

Activation Functions: The choice of activation functions also contributes to this problem.
Functions like sigmoid or tanh squash input values into a limited range (0 to 1 for
sigmoid), which can further compress gradients, leading to very small values during
backpropagation.

Long Sequences: The vanishing gradient problem becomes more pronounced with
longer sequences. As the network attempts to learn from distant time steps, the
cumulative effect of multiplying small gradients can render earlier gradients negligible,
causing the network to forget crucial information from earlier inputs

Q31. How do Transformers ensure that there aren’t any vanishing

gradient related problems?

Answer: Transformers effectively mitigate the vanishing gradient problem through
several architectural features that enhance gradient flow during training. Here are the
key mechanisms that contribute to this robustness:

Key Mechanisms

Self-Attention Mechanism:

In Transformers, each token in a sequence can directly attend to every other token,
regardless of their position. This contrasts with RNNs, where information must pass
through each time step sequentially. As a result, gradients can flow more directly
between tokens, reducing the risk of vanishing gradients when learning long-range
dependencies.

Residual Connections:

Transformers incorporate residual (or skip) connections that allow gradients to bypass
certain layers during backpropagation. This design helps maintain gradient magnitude
by providing alternative pathways for gradient flow, thus preventing them from
diminishing too much as they propagate through multiple layers.

Layer Normalization:

Layer normalization is employed in Transformers to stabilize activations across layers,
which helps prevent gradients from becoming excessively small or large. By normalizing
the inputs to each layer, this technique ensures that the training process remains stable
and efficient.

Pre-Layer Normalization:

Recent studies indicate that using pre-layer normalization can further alleviate issues
related to gradient vanishing. This approach normalizes inputs before they enter the
attention and feed-forward layers, which has been shown to improve convergence and
stability during training

Multi-Head Attention:

The multi-head attention mechanism allows the model to focus on different parts of the
input sequence simultaneously, enhancing its ability to capture complex patterns without
suffering from diminishing gradients. Each head can learn different relationships in the
data, contributing to a richer representation

Q32. In Transformers why do we need to create 3 different
vectors(query key value) for each embedding before attention is

calculated?

Answer: Purpose of Q, K, and V Vectors

Different Roles in Attention Mechanism:

Query: Represents the information that a particular token seeks from other tokens in the
sequence. It essentially asks, "What am | looking for?"

Key: Acts as a descriptor for each token, indicating what features or attributes it
possesses. This can be thought of as answering, "What can | offer?"

Value: Contains the actual information or content that will be returned based on the
relevance determined by the Query and Key. It answers, "What is my value in this
context?"

Facilitating Contextualization:

By separating these roles, the model can compute attention scores based on how well
each Query aligns with the Keys of other tokens. This process allows for a nuanced
understanding of which tokens should contribute to the final representation of a given
token based on its context within the sequence

Linear Transformations:

Each of these vectors is derived from the same input embedding through different linear
transformations using distinct weight matrices (Wq for Queries, Wk for Keys, and Wv for
Values). This allows the model to learn different projections of the input data that
capture various aspects relevant to attention computation

Parallel Computation:

The design allows all tokens in a sequence to be processed simultaneously rather than
sequentially. This parallelism is crucial for efficiency and scalability in training large
models on extensive datasets

Q33. Explain how BERT performs Masked Language Modelling?

Answer:

BERT (Bidirectional Encoder Representations from Transformers) employs a technique
known as Masked Language Modeling (MLM) during its training process. This method is
crucial for enabling BERT to learn contextual representations of words based on their
surrounding context. Here’s how MLM works in detail:

Mechanism of Masked Language Modeling
Token Masking:

During training, 15% of the tokens in each input sequence are randomly selected to be
masked. The purpose of this masking is to create a scenario where the model must
predict the original token based on the context provided by the other, non-masked
tokens in the sequence.

Replacement Strategy:

The selected tokens undergo a specific replacement strategy:80%

This strategy helps ensure that the model does not become overly reliant on the [MASK]
token and maintains a robust understanding of context from both masked and
unmasked words.

Contextual Prediction:

After masking, BERT processes the entire sequence through its transformer
architecture, which uses self-attention mechanisms to consider both left and right
contexts simultaneously. This bidirectional approach allows BERT to capture nuanced
relationships between words effectively.

The model then attempts to predict the masked tokens based on their context within the
sequence. Each output vector from BERT's encoder is transformed into a probability
distribution over the vocabulary using a classification layer.

Loss Calculation:

The model's predictions for the masked tokens are evaluated against their actual values
to compute a loss. The objective during training is to minimize this loss, thereby
improving BERT's ability to accurately predict masked words based on context.

Q34. Why don’t Transformers use Batch Normalization and
explain the type of normalization technique that they use?

Answer: Transformers do not use Batch Normalization primarily due to the nature of
their architecture and the sequence-based tasks they are designed for. Instead, they
utilize Layer Normalization, which is more suitable for their operational framework.
Here’s a detailed explanation of why Batch Normalization is less effective in
Transformers and how Layer Normalization is implemented:

Reasons for Not Using Batch Normalization

Sequential Data Handling:

Transformers process sequences of data (like sentences) in parallel, rather than in
batches where the entire sequence is processed at once. Batch Normalization
computes statistics (mean and variance) across a batch of samples, which can
introduce noise and instability when applied to individual sequences or variable-length
inputs.

Dependence on Sequence Length:

In NLP tasks, sequences can vary significantly in length. Batch Normalization relies on
consistent batch sizes and can lead to issues when the model encounters sequences of
different lengths, as the normalization statistics become less reliable.

Training Dynamics:

The use of Batch Normalization can complicate the training dynamics in Transformers,
especially with respect to learning rates and convergence. It requires careful tuning of
hyperparameters and can lead to instability during training, particularly in deep
architectures.

Q35. What'’s the difference between Self Attention, Multi-Head
Attention and Cross-Attention?

Self-attention, multi-head attention, and cross-attention are key components of the
Transformer architecture, each serving distinct purposes in processing input sequences.
Self-attention allows each token in an input sequence to attend to all other tokens within
the same sequence, enabling the model to capture relationships and dependencies
regardless of their positions. This mechanism enhances the contextual representation of
each token based on its surrounding context, which is crucial for tasks like language
modeling and understanding sentence structure. For example, in a sentence like "The
cat sat on the mat," self-attention helps the model understand how "cat" relates to "sat"
and "mat," thereby capturing the overall meaning.

Multi-head attention extends self-attention by allowing multiple attention heads to
operate in parallel. Each head computes its own attention scores using separate sets of
learned parameters, which allows the model to jointly attend to information from
different representation subspaces at various positions. This capability is particularly
beneficial in tasks like translation, as it enables the model to focus on different parts of
the source sentence simultaneously when generating each word in the target sentence.

Cross-attention, on the other hand, allows one sequence (typically the target) to attend
to another sequence (usually the source). In this mechanism, the Query comes from
one sequence while the Key and Value come from another. Cross-attention is essential
for tasks where outputs depend on multiple inputs, such as machine translation or
image captioning. For instance, while generating a translation for a word in the target
language, cross-attention enables the model to look back at relevant words in the
source language sentence. In summary, self-attention focuses on relationships within a
single sequence, multi-head attention enhances this by using multiple perspectives
simultaneously, and cross-attention connects two different sequences for more complex
tasks.

Q36. What is the difference between GPT and BERT in terms of
generative tasks?

Answer: The primary difference between GPT (Generative Pre-trained Transformer) and
BERT (Bidirectional Encoder Representations from Transformers) in terms of generative
tasks lies in their architectures and training methodologies, which influence how they
generate language. GPT is designed as a decoder-only model that generates text in a
unidirectional manner, meaning it predicts the next word based solely on the preceding
context. This capability makes GPT particularly adept at generative tasks, such as
writing coherent paragraphs, completing sentences, or creating dialogue, as it
generates text sequentially, word by word.

In contrast, BERT employs a bidirectional architecture that processes text by
considering both the left and right contexts simultaneously. While BERT is primarily
focused on understanding and analyzing language rather than generating it, it uses a
technique called Masked Language Modeling during training, where certain words in a
sentence are masked, and the model learns to predict these masked words based on
their surrounding context. This approach enables BERT to excel in tasks that require
deep contextual understanding, such as sentiment analysis and question answering.
However, it is not inherently designed for generating text in the same way that GPT is.
Overall, while both models leverage the transformer architecture and demonstrate high
performance in various NLP tasks, GPT's generative capabilities are more pronounced
due to its unidirectional approach and focus on sequential text generation. In contrast,
BERT's strength lies in its ability to comprehend and analyze language contextually,
making it more suitable for tasks that require understanding rather than generation.

Q37. In the Transformer architecture which part of the
model(encoder or decoder) is autoregressive and which part of it

is non-autoregressive at run time and how?

Answer: In the Transformer architecture, the encoder and decoder serve different roles
regarding autoregressive and non-autoregressive processes during runtime. The
decoder is autoregressive, meaning it generates output sequences one token at a time
in a sequential manner. This is achieved through a mechanism called causal masking,
which prevents the decoder from accessing future tokens when predicting the next
token in the sequence. As a result, each generated token relies on the previously
generated tokens, allowing for coherent and contextually relevant text generation.

On the other hand, the encoder operates in a non-autoregressive manner. It processes
the entire input sequence simultaneously, allowing it to capture relationships and
dependencies among all tokens without the constraints of sequential generation. The
encoder's ability to attend to all input tokens at once facilitates a comprehensive
understanding of the input context, which is then utilized by the decoder during its
autoregressive generation process.

This distinction between autoregressive and non-autoregressive functionalities within
the Transformer architecture enables efficient handling of various tasks. While the
encoder focuses on understanding and encoding input data, the decoder generates
output in a controlled and sequential manner, ensuring that each step builds upon the
previous context.

Q38. Write Python code using gensim to train Word2Vec
embeddings on a custom text corpus.

from gensim.models import Word2Vec

from gensim.utils import simple_preprocess
from nltk.corpus import stopwords

import nltk

Sample text corpus
corpus = [

"Word embeddings are a type of word representation that allows words to
be represented as vectors in a continuous vector space.",

"Word2Vec is a popular algorithm used to produce word embeddings.",

"Gensim is a Python library that can be used for natural language
processing and building word embeddings.",

"Training word embeddings requires a large amount of text data to be
effective."

]

Preprocess the corpus: tokenize and remove stopwords
def preprocess(text):

stop_words = set(stopwords.words("english"))

return [word for word in simple_preprocess(text) if word not in
stop_words]

Tokenize and clean each sentence in the corpus
processed_corpus = [preprocess(sentence) for sentence in corpus]

Initialize and train the Word2Vec model

model = Word2Vec(sentences=processed_corpus, vector size=100, window=5,
min_count=1, workers=4, sg=1)

Save the model
model.save("word2vec_model.model™)

Example usage: find most similar words
similar_words = model.wv.most_similar("word", topn=5)
print("Words similar to 'word':", similar_words)

Q39. How would you use pre-trained word embeddings like
Word2Vec or GloVe in a neural network model using PyTorch or
TensorFlow?

Answer:
1. PyTorch Implementation

import torch
import torch.nn as nn
from gensim.models import KeyedVectors

Load pre-trained Word2Vec or GloVe embeddings

embedding path = 'path/to/your/word2vec_or glove file' # e.g.,
'GoogleNews-vectors-negative300.bin'

word_vectors = KeyedVectors.load word2vec format(embedding path,
binary=True)

Prepare the embedding matrix

embedding dim = word_vectors.vector_size

vocab_size = len(word_vectors.index_to_key)

embedding matrix = torch.zeros((vocab_size, embedding dim))

Map words to index in embedding matrix
word_to_idx = {word: idx for idx, word in
enumerate(word_vectors.index_to key)}

Fill embedding matrix with pre-trained embeddings
for word, idx in word_to_idx.items():
embedding matrix[idx] = torch.tensor(word_vectors[word])

Define a simple model with embedding layer using PyTorch

class TextClassifier(nn.Module):
def __init_ (self, vocab_size, embedding_dim, output_dim):

super(TextClassifier, self). init ()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.embedding.weight = nn.Parameter(embedding matrix) # Load

pre-trained embeddings
self.embedding.weight.requires_grad = False # Freeze embeddings
self.fc = nn.Linear(embedding_dim, output_dim)

def forward(self, x):
embedded = self.embedding(x)
return self.fc(embedded.mean(dim=1)) # Mean of embeddings for
simplicity

Example usage
model = TextClassifier(vocab_size, embedding_dim, output_dim=2)

2. TensorFlow/Keras Implementation

import numpy as np
import tensorflow as tf
from gensim.models import KeyedVectors

Load pre-trained Word2Vec or GloVe embeddings

embedding path = 'path/to/your/word2vec_or_glove file' # e.g.,
'GoogleNews-vectors-negative300.bin'

word_vectors = KeyedVectors.load word2vec format(embedding path,
binary=True)

Prepare the embedding matrix

embedding dim = word_vectors.vector_size

vocab_size = len(word_vectors.index_to_key)

embedding matrix = np.zeros((vocab_size, embedding dim))

Map words to index in embedding matrix
word_to_idx = {word: idx for idx, word in
enumerate(word_vectors.index_to key)}

Fill embedding matrix with pre-trained embeddings
for word, idx in word_to_idx.items():
embedding matrix[idx] = word_vectors[word]

Define a simple model with embedding layer using TensorFlow/Keras
model = tf.keras.Sequential([
tf.keras.layers.Embedding(input dim=vocab_size,
output _dim=embedding dim,
weights=[embedding matrix], trainable=False),
tf.keras.layers.GlobalAveragePoolinglD(),
tf.keras.layers.Dense(2, activation='softmax') # Example output layer
for binary classification

D

Compile the model
model.compile(optimizer="adam', loss='sparse_categorical crossentropy’,
metrics=["accuracy'])

Q13. How would you use cosine similarity to find the top 5 similar

words to a given word using pre-trained embeddings in Python?
Answer: To find the top 5 words most similar to a given word using cosine similarity with
pre-trained embeddings,

import numpy as np
from gensim.models import KeyedVectors

embedding_path = 'path/to/your/word2vec_or_glove file'
word_vectors = KeyedVectors.load word2vec_format(embedding path,
binary=True)

Define function to compute cosine similarity
def cosine_similarity(vecl, vec2):

return np.dot(vecl, vec2) / (np.linalg.norm(vecl) *
np.linalg.norm(vec2))

Find top 5 most similar words
def top_similar_words(word, word vectors, top n=5):
if word not in word_vectors:

return f"{word} not in vocabulary"

word_vec = word_vectors[word]
similarities = []

for other_word in word_vectors.index_to_key:
if other_word == word:
continue
sim = cosine_similarity(word_vec, word_vectors[other_word])
similarities.append((other_word, sim))

Sort by similarity and get top N
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[:top_n]

Example usage
top_words = top_similar_words("king", word_vectors)

print("Top similar words to ‘'king':", top_words)

Fine Tuning, GAN

Q1. Describe the mathematical concept of low-rank decomposition in
LoRA. How are the matrices A and B constructed, and what constraints

should be considered when choosing the rank r?

Answer:Low-rank decomposition in LoRA focuses on representing the weight update matrix
AW as a product of two smaller matrices, A and B, to efficiently reduce the number of
trainable parameters. Given the pre-trained weight matrix W_0 of size dxk, LoRA introduces an
update matrix AW of the same size. Instead of directly updating AW, LoRA decomposes it into
two low-rank matrices: A, of dimension dxr, and BBB, of dimension rxk, where r is the rank
(typically much smaller than both d and k). Mathematically, this decomposition is expressed
as:

AW=AxB
Thus, instead of training dxk parameters in AW, LoRA only trains r(d+k) parameters, drastically
reducing the computational load, since r&d,k.

The choice of r, the rank, is pivotal. If ris too small, the low-rank approximation might not
capture the necessary information for the task, leading to underfitting. If r is too large, it
defeats the purpose of parameter efficiency. Hence, r needs to be chosen carefully to balance
the trade-off between model expressiveness and computational efficiency.

Q2. How does block wise quantization in QLoRA with smaller blocks
reduce precision loss, and how does it impact memory efficiency and

model performance on resource-constrained hardware?
Answer:Blockwise quantization, as used in QLoRA, divides the weight matrices of a model into
smaller blocks to apply quantization more effectively. In QLoRA, the model weights are
quantized to 4-bit precision, but instead of applying this quantization uniformly across the
entire matrix, the matrix is split into fixed-size blocks (typically of size 64). Each block is then
independently quantized, allowing for better representation of the weights, especially in
regions where the distribution of values is non-uniform. The goal is to preserve as much
information as possible while reducing precision and memory usage.

This approach addresses the problem of precision loss that occurs when quantizing values
that are not uniformly distributed across the range. By handling smaller blocks
independently, QLoRA ensures that values within each block are represented more accurately,
minimizing the error that arises from quantization. This is especially useful for large models,
as it reduces the memory footprint while maintaining model performance, making it feasible
to fine-tune and run inference on resource-constrained hardware like GPUs with limited
memory.

Q3. Why is LoRA classified as an “adaptation” technique rather than an
“adapter”? How does this classification impact the fine-tuning
strategy, and why is it important not to introduce additional layers in
LoRA?

Answer: LoRA is classified as an "adaptation" technique because it modifies the model's
existing weight matrices by adding low-rank matrices rather than inserting new layers like
"adapters." This is crucial because adding layers in adapter-based methods can lead to
increased latency during inference, making the model slower in real-time applications. LoRA,

on the other hand, directly updates certain parts of the model’s parameters while keeping

most of the original weights frozen. By not introducing new layers, LORA minimizes the impact
on model speed and memory usage, allowing for efficient fine-tuning. This approach is
particularly beneficial for large language models, where adding layers would significantly
increase both computational costs and latency.

Q4. In what scenarios might adapter-based approaches still be useful
despite their higher latency compared to LoRA?

Answer: Adapter-based approaches can be useful when you need flexibility or want to handle
many different tasks, such as text classification, sentiment analysis, and named entity
recognition. In these cases, each task can have its own adapter, which makes it easy to switch
between tasks without retraining the entire model. This is particularly helpful in multi-task
learning or when you frequently update tasks, like adapting to new domains or languages.

Adapters are also useful when more changes to the model are needed than LoRA allows. For
example, if you're working on complex tasks like summarization or machine translation that
require significant adjustments to the model’s architecture, adapters can provide that
capability. Even though adapters introduce more latency, they work well in situations where
speed isn't the main concern, such as offline processing or research projects, where
performance on multiple tasks is more critical than real-time response.

Q5. How do perplexity and BLEU score differ in their roles as
evaluation metrics for language models, and in what situations would
you prioritize one metric over the other when assessing model

performance?

Answer: Perplexity and BLEU score are two important metrics for evaluating language models
(LLMs). Perplexity measures how well a model predicts a sequence of words. A lower
perplexity indicates better predictive performance, making it useful for assessing how fluently
a model can generate text. However, it doesn't directly evaluate the meaning or quality of the
generated content.

In contrast, the BLEU score evaluates the quality of generated text by comparing it to
reference outputs. It measures how many n-grams (sequences of words) in the generated text
match those in the reference texts. This makes BLEU particularly useful for tasks like machine
translation and summarization, where accuracy relative to specific outputs is essential. While
perplexity focuses on the model's ability to predict words, BLEU emphasizes how closely the

generated text matches expected results.

Q6. Discuss in what context it is recommended to use transfer learning

and when it is not.

Answer: Transfer learning is a machine learning method where a model developed for a task is
reused as the starting point for a model on a second task. It is a popular approach in deep
learning where pre-trained models are used as the starting point for computer vision and
natural language processing tasks given the vast computing and time resources required to
develop neural network models on these problems and from the huge jumps in a skill that
they provide on related problems.

Transfer learning is used for tasks where the data is too little to train a full-scale model from
the beginning. In transfer learning, well-trained, well-constructed networks are used which
have learned over large sets and can be used to boost the performance of a dataset.

Transfer Learning can be used in the following cases:

The downstream task has a very small amount of data available, then we can try using
pre-trained model weights by switching the last layer with new layers which we will train.

In some cases, like in vision-related tasks, the initial layers have a common behavior of
detecting edges, then a little more complex but still abstract features and so on which is
common in all vision tasks, and hence a pre-trained model's initial layers can be used directly.
The same thing holds for Language Models too, for example, a model trained in a large Hindi
corpus can be transferred and used for other Indo-Aryan Languages with low resources
available.

Cases when transfer Learning should not be used:

The first and most important is the "COST". So is it cost-effective or we can have a similar
performance without using it.

The pre-trained model has no relation to the downstream task.

If the latency is a big constraint (Mostly in NLP) then transfer learning is not the best option.
However Now with the TensorFlow lite kind of platform and Model Distillation, Latency is not
a problem anymore.

Q7. What is the role of noise in GANs, and why is it necessary?

Answer: In Generative Adversarial Networks (GANSs), noise plays a crucial role in generating
diverse and realistic outputs. The generator takes a noise vector, usually sampled from a
standard normal distribution, as its input. This randomness allows the generator to explore

different points in the latent space, enabling it to produce various data samples instead of
repeating the same outputs. This is important for preventing mode collapse, where the
generator creates only a limited range of outputs.

Moreover, the noise helps the generator learn to generalize from the training data, which
enhances its ability to create new instances that closely match the true data distribution. In
advanced GANSs like StyleGAN, noise can also be adjusted to control specific features in the
generated data, offering more flexibility in the synthesis process. Overall, noise is essential in
the GAN framework for achieving both diversity and realism in the generated outputs.

Q8. What are the original loss functions used in GANs, and what
problems are associated with them? How do Wasserstein GANs

address them?

Answer: In the original Generative Adversarial Networks (GANs), the loss functions are
designed for two players: the generator GGG and the discriminator DDD. The generator tries to
create data that looks real, while the discriminator tries to tell apart real data from fake data.
The generator's loss is calculated as:

L(G) = =Eenp.(»[log(D(G(2)))]
The discriminator's loss is:
L(D) = —Earpyosa(@)108(D(2))] = Eznp. (»[log(1 — D(G(2)))]

While this setup helps the generator improve, it often leads to problems like unstable training,
where the generator doesn't learn effectively, and mode collapse, where it produces only a
few types of outputs. To fix these issues, Wasserstein GANs (WGANSs) use a different loss
function based on the Wasserstein distance, which measures how different two distributions
are. Instead of maximizing the log probability, the generator in WGANSs tries to minimize:

LWGAN(G) — _EZsz(Z) [D(G(Z))]

And the discriminator tries to maximize:

Lwaan (D) = Eonpygra (@) [D(2)] = Eznp, () [D(G(2))]

WGANSs also require the discriminator to satisfy a condition called Lipschitz continuity, which
keeps its output bounded. This approach helps prevent problems like vanishing gradients,
leading to a more stable training process. By focusing on the distance between real and
generated data rather than probabilities, WGANs provide better feedback for both the
generator and discriminator, allowing them to learn more effectively.

https://www.codecogs.com/eqnedit.php?latex=L(G)%20%3D%20-%5Cmathbb%7BE%7D_%7Bz%20%5Csim%20p_z(z)%7D%5B%5Clog(D(G(z)))%5D#0
https://www.codecogs.com/eqnedit.php?latex=L(D)%20%3D%20-%5Cmathbb%7BE%7D_%7Bx%20%5Csim%20p_%7Bdata%7D(x)%7D%5B%5Clog(D(x))%5D%20-%20%5Cmathbb%7BE%7D_%7Bz%20%5Csim%20p_z(z)%7D%5B%5Clog(1%20-%20D(G(z)))%5D#0
https://www.codecogs.com/eqnedit.php?latex=L_%7BWGAN%7D(G)%20%3D%20-%5Cmathbb%7BE%7D_%7Bz%20%5Csim%20p_z(z)%7D%5BD(G(z))%5D#0
https://www.codecogs.com/eqnedit.php?latex=L_%7BWGAN%7D(D)%20%3D%20%5Cmathbb%7BE%7D_%7Bx%20%5Csim%20p_%7Bdata%7D(x)%7D%5BD(x)%5D%20-%20%5Cmathbb%7BE%7D_%7Bz%20%5Csim%20p_z(z)%7D%5BD(G(z))%5D%20%5C%5D#0

Q9. Explain how the auxiliary classifier GAN (AC-GAN) works.

Answer: The Auxiliary Classifier GAN (AC-GAN) is an improved version of the standard GAN that
adds a classifier to the discriminator. The generator in AC-GAN creates synthetic data while
also receiving class labels as input. This helps it generate data that is not only realistic but also
belongs to specific categories. The discriminator has two tasks: it determines whether a
sample is real or fake, and it classifies the samples into their respective classes. This dual role
enhances the model's ability to generate diverse and high-quality samples.

The loss functions in AC-GAN include two components for the discriminator: one for
distinguishing real from fake samples and another for predicting class labels. The generator's
loss function focuses on producing samples that the discriminator considers real and
classifies correctly. This setup improves the training process and results in better sample
generation, as it provides the generator with clearer feedback on how to create more accurate
data.

Q10. Describe the truncation trick and its effect on the quality of GAN

outputs.

Answer: The truncation trick is a technique used in GANs, especially in StyleGAN models, to
control the trade-off between the diversity and quality of generated samples. It involves
adjusting the distribution of the latent vectors (the input noise) that are fed into the generator.
Normally, latent vectors are sampled from a standard normal distribution, but in the
truncation trick, the latent vectors are scaled towards the mean of the distribution. This
reduces their variance, effectively "truncating" the distribution.

By doing this, the generated outputs become more realistic and of higher quality because the
generator is pushed to produce samples closer to the typical (mean) training data it has
learned. However, the downside is that this comes at the cost of diversity—fewer unique or
diverse outputs are produced since the input space is restricted. So, while the truncation trick
can improve the visual quality of generated images, it may limit the model’s ability to
generate a wide range of different outputs.

Q11. Discuss the importance of using multiple scales in GANs for

improving output quality.

Answer: Using multiple scales in GANs, like in Progressive GANs and StyleGAN, is important for
improving the quality of the generated images. The idea is to help the model learn different
levels of detail, from large, basic shapes to fine, small details. This is done by starting with
low-resolution images and gradually adding more layers as the model works with

higher-resolution images. This way, the model learns simpler features first and then adds
more complex details, making the images look more realistic.

At lower resolutions, the generator learns overall shapes and structures, like the basic layout
of objects. As the resolution increases, it learns smaller details like textures and edges. This
method helps prevent the problem where the model generates similar or repetitive images
(called mode collapse) and makes training more stable since the model isn't overwhelmed
with too much detail at once.

The discriminator also benefits from multiple scales because it can check both the big picture
and the finer details. By doing this, it gives better feedback to the generator, which helps
produce images that are not only consistent in their overall structure but also sharp and
detailed, leading to much higher-quality outputs.

Q12. Explain the Pix2Pix algorithm and its applications

image-to-image translation.

Answer: The Pix2Pix algorithm is a type of GAN designed for image-to-image translation tasks,
where the goal is to transform one type of image into another while maintaining key features.
It works by using a pair of images: an input image (source) and a target image (desired
output), and the model learns to map between the two. The architecture consists of a
generator and a discriminator. The generator creates an output image given an input image,
while the discriminator checks whether the output looks realistic compared to the true target
image.

The generator in Pix2Pix is usually a U-Net, which has an encoder-decoder structure. The
encoder captures high-level features, while the decoder reconstructs the output image. The
U-Net uses skip connections between layers, allowing it to pass both low-level and high-level
information between the input and output, which helps generate sharper images.

The discriminator in Pix2Pix uses a patch-based approach (PatchGAN), where instead of
evaluating the entire image, it evaluates smaller patches of the image to check if they are
realistic. This makes the model focus on local details, improving the quality of the generated
images.

Applications of Pix2Pix include tasks like turning sketches into realistic images, converting
black-and-white images to color, translating satellite images into maps, or even transforming
day photos into night scenes. It’s widely used in domains where a paired dataset of input and
outputimages is available, making it very versatile for various image transformation tasks.

Q13.Discuss the limitations of traditional metrics like Inception Score
and FID in assessing GAN performance.

Answer: Inception Score (IS): IS evaluates GAN performance by measuring the confidence of a
pre-trained classifier (Inception network) in recognizing generated images and their diversity.
It focuses on how well the generated images fit into known classes. However, IS has
limitations: it is biased toward the classifier’s training data (e.g., ImageNet), doesn't directly
compare generated images to real data, and often fails to detect mode collapse, making it less
reliable for datasets outside of predefined categories.

Fréchet Inception Distance (FID): FID compares the distribution of real and generated images
by using the mean and covariance of their high-level features, extracted by a pre-trained
Inception network. While FID accounts for both quality and similarity to real data, it is
sensitive to biases from the pre-trained model and minor image artifacts, which can skew the
results. It also simplifies image features, which might miss important differences in more
complex image properties like texture and structure.

Q14.How Can we Scale GANs Beyond Image Synthesis?

Answer:

Text: GANs struggle with text because it is made of discrete units (like words), and GANs work
best with continuous data, which allows smooth gradients for training. To handle this, one
approach is to convert text into continuous forms, letting the GAN process it without dealing
directly with discrete words. Another method uses gradient estimation to work with text data
directly. However, neither approach has yet matched the performance of traditional models
like those based on likelihood, which remain better for tasks like language modeling.

Structured Data: For structured data, like graphs, GANs haven't been very successful. This is
part of a broader challenge in geometric deep learning, where deep learning models, in
general, have trouble with non-Euclidean data like graphs. Some attempts have been made,
such as generating random walks from graphs, which the GAN’s discriminator evaluates. Still,
no significant progress has been made in applying GANs to structured data, and it's not clear
whether GANs are the best choice for this type of data compared to other models.

Audio: Audio is the area where GANs have made the most progress outside of images. Audio is
continuous, like images, so GANs can be adapted more easily for tasks like audio synthesis.
Early models introduced special techniques to handle the continuous nature of sound. Recent
advancements show that GANs can even outperform older methods, like autoregressive
models, on certain audio quality measures, suggesting GANs may soon become a key tool for
generating realistic audio.

